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Abstract 

The Dixit-Stiglitz model of monopolistic competition is widely used as a building 
block across many applied general equilibrium fields. Two of its remarkable 
features are the invariance of the markup rate and the optimality of the free-entry 
equilibrium. Of course, neither of these two features is robust. Departure from 
CES makes entry either procompetitive or anticompetitive (i.e., the markup rate 
either goes down or goes up as more firms enter). Departure from CES also 
makes entry either excessive or insufficient.  But how is the condition for 
procompetitive vs. anticompetitive entry related to that for excessive vs. 
insufficient entry? To investigate this question, we extend the Dixit-Stiglitz 
monopolistic competition model to three classes of homothetic demand systems, 
which are mutually exclusive except that each of them contains CES as a knife-
edge case.  In all three classes, we show, among others, that entry is excessive 
(insufficient) when it is globally procompetitive (anticompetitive) and that, in the 
presence of the choke price, entry is procompetitive and excessive at least for a 
sufficiently large market size. 
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1. Introduction 

The monopolistic competition model with symmetric CES demand systems with gross 

substitutes, developed in Dixit-Stiglitz (1977, Section I), is widely used as a building block 

across many applied general equilibrium fields, most notably in macroeconomics and 

international trade.  Among its remarkable features are the invariance of the markup rate and the 

optimality of the free-entry equilibrium.1 Of course, neither of these two features is robust. Once 

we depart from the knife-edge case of CES, the markup rate charged by each firm would change, 

as more firms enter in response to a market size increase. The markup rate may either go down 

(the case of procompetitive entry) or go up (the case of anticompetitive entry). Departure from 

CES would also lead to the inefficiency of the free-entry equilibrium. There may be either too 

many firms operating and hence too much product variety being offered (the case of excessive 

entry/variety), or too few firms operating and too little product variety being offered (the case of 

insufficient entry/variety). 

But how is the condition for procompetitive vs. anticompetitive entry related to that for 

excessive vs. insufficient entry? Of course, unless we impose some restrictions on the demand 

system, it is possible to have all four combinations (procompetitive-excessive, procompetitive-

insufficient, anticompetitive-excessive, and anticompetitive-insufficient). After all, CES leads to 

the markup rate invariance and the optimality of the free-entry equilibrium for different reasons. 

The markup rate is invariant under CES, because each firm faces demand curve whose price 

elasticity is exogenously constant. It depends entirely on the local property of the demand curve, 

that is, it continues to hold as long as the price elasticity is constant around the point chosen by 

each firm. In contrast, the optimality of the free-entry equilibrium depends on the global property 

of the demand system. To understand this, recall that there are two sources of externalities in 

monopolistic competition with entry, as discussed in Tirole (1988, Chapter 7) and Matsuyama 

(1995; Section 3E) among many others. They are the inability of a firm to fully appropriate its 

social surplus its entry generates, which creates positive externalities, and its failure to account 

for business stealing from other firms, which creates negative externalities2.  It turns out that 

 
1To be precise, there exists an outside competitive sector in Dixit and Stiglitz (1977). Due to intersectoral distortion, 
there may be too little entry to the monopolistically competitive sector. Yet, they showed that the resource allocation 
within the monopolistically competitive sector is optimal at the free-entry equilibrium under CES. 
2Mankiw and Whinston (1986) and Suzumura and Kiyono (1987) showed that such a business stealing effect causes 
excessive entry in a homogenous goods industry in partial equilibrium settings. Mankiw and Whinston also showed 
that the excessive entry result could be overturned if different firms produce imperfect substitutes. 
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these two sources of externalities, one positive and one negative, exactly cancel out each other 

under CES. 

This does not mean, however, that the condition for procompetitive vs. anticompetitive 

entry and that for excessive vs. insufficient entry are unrelated. On the contrary, we argue there 

is a tight connection between the two. Departing from the knife-edge case of CES, where the 

equilibrium entry is optimal, in the direction of making entry procompetitive exacerbates 

negative externalities to other firms by reducing their profit margin, which could cause excessive 

entry. Likewise, departing from the knife-edge case of CES in the direction of making entry 

anticompetitive mitigates negative externalities to other firms by increasing their profit-margin, 

which could cause insufficient entry. Of course, the above argument is only partial, because 

making the entry procompetitive or anticompetitive might also affect positive externalities due to 

the other source of inefficiency. Nevertheless, it suggests that, under some additional conditions, 

procompetitive entry is excessive and anticompetitive entry is insufficient. 

So, the right question to ask is: “under which conditions does procompetitive entry imply 

excessive entry and under which conditions does anticompetitive entry imply insufficient entry?”  

To investigate this question, we extend the Dixit-Stiglitz monopolistic competition model with 

symmetric firms under the CES demand system with gross substitutes to three classes of 

symmetric homothetic demand systems with gross substitutes, each named for its defining 

properties, Homotheticity with a Single Aggregator (H.S.A.), Homotheticity with Direct Implicit 

Additivity (H.D.I.A.), and Homotheticity with Indirect Implicit Additivity (H.I.I.A.). We have 

chosen these three classes for several reasons. 

First, they are all homothetic. Even though there have been many attempts to develop 

monopolistic competition models without CES, they have typically done so by making the 

demand system nonhomothetic. However, in order to isolate the efficiency implications of the 

markup rate being responsive to entry caused by a market size change, we need to avoid 

introducing the scale effect of a market size change operating through nonhomotheticity. In 

addition, it is desirable to maintain homotheticity for our departure from CES to be useful as a 

building block in applied general equilibrium models. This is because monopolistic competition 

with free entry is typically used as a way to endogenize sector-level productivity in multi-sector 

models, where its output in each sector is produced competitively with constant returns to scale 
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(CRS) technologies, which generate homothetic demand for differentiated inputs, which are 

supplied by monopolistically competitive producers. 

Second, these three classes are mutually exclusive except that they all contain CES as a 

knife-edge case; see Figure 1, adopted from Matsuyama and Ushchev (2017)3. These three 

classes thus offer three alternative ways of departing from CES, while respecting the 

homotheticity requirement.   

Third, they are all defined nonparametrically and hence flexible enough to allow for any 

downward-sloping demand curve each firm might face.  In particular, each of these three demand 

systems allows the possibility that entry can be either procompetitive or anticompetitive, as well 

as the possibility that it can be either excessive or insufficient.   

Fourth, in spite of such flexibility, they remain tractable. This is not only because the 

entry and pricing behavior of other firms affect the demand curve each firm faces only through 

one aggregator (under H.S.A., as the name suggests) or two aggregators (under H.D.I.A. and 

H.I.I.A.), but also because the entry and pricing behavior of other firms affect the price elasticity 

of demand each firm faces only through one aggregator under all three classes.4 Due to this 

tractability, one could identify the additional restrictions on the primitives that ensure the 

existence and uniqueness of the symmetric free-entry equilibrium for any level of market size, 

and the unique equilibrium is analytically solvable. This facilitates the comparative statics and 

welfare analysis. In particular, the condition for procompetitive entry turns out to be equivalent 

to Marshall’s second law of demand (i.e., the price elasticity of the demand curve each firm faces 

increases in its price, holding everything else, including prices of other firms, constant) under 

these three classes.5 The condition for excessive entry can also be obtained explicitly, and hence 

can be compared with the condition for procompetitive entry. 

Here are our main findings.  In all three classes, entry is excessive when it is globally 

procompetitive. By “globally” procompetitive, we mean that the equilibrium markup rate is 

 
3Matsuyama and Ushchev (2017, Proposition 4) proved that these classes are pairwise-disjoint with the sole 
exception of CES, even without restricting to be symmetric with gross substitutes. However, in this paper, we 
impose these restrictions to make them applicable to the Dixit-Stiglitz environment. 
4Under H.S.A., the effect of behaviors of competing firms on the demand curve each firm faces is summarized by 
only one aggregator, and hence so is the effect on its price elasticity.  Under H.D.I.A. and H.I.I.A., the effect of the 
demand curve each firm faces is summarized by two aggregators, but only one of them can affect its price elasticity, 
because the other aggregator enters the demand curve multiplicatively. 
5In general, Marshall’s second law of demand is neither sufficient nor necessary for procompetitive entry, since the 
former is about the property of the individual demand curve, while the latter is about the property of the entire 
demand system. 
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monotonically decreasing in market size. Likewise, in all three classes, entry is insufficient when 

it is globally anticompetitive, that is, when the equilibrium markup rate is monotonically 

increasing in market size.6  Between these two cases lies the borderline case of CES, where the 

markup rate is globally independent of market size and entry is always efficient. One important 

implication of these findings, as visualized in Figure 2, is that, for those who believe that 

procompetitive entry is the empirically relevant case, entry is excessive, which suggests that 

(small) regulation of entry is welfare-improving, at least in the absence of any other distortions. 

We also show that entry is procompetitive and excessive for a sufficiently large market 

size in the presence of the choke price.7 This is because the price elasticity goes to infinity at the 

choke price. This means that, as market size increases and more firms enter, each firm is forced 

to operate close to the choke price, that is, in the range where the price elasticity is increasing 

and the markup rate is decreasing in market size. 

There have been many attempts to extend the Dixit-Stiglitz monopolistic competition 

models under CES to non-CES demand systems, starting from Dixit and Stiglitz (1977, Section 

II).  However, as already indicated, virtually all of them have done so by making the demand 

system nonhomothetic.8  Feenstra (2003) is an exception. He used symmetric homothetic 

translog as an alternative to CES, which exhibits the procompetitive effect with a choke-price, 

thereby ruling out the possibility of anticompetitive entry. Furthermore, he did not investigate 

how the equilibrium and optimal allocations differ from each other. Since symmetric homothetic 

translog is a special case of symmetric H.S.A., our analysis suggests excessive entry and hence a 

welfare-improving entry regulation under translog. Kimball (1995) considered the class of 

symmetric demand systems identical to symmetric H.D.I.A., except that he assumed an 

exogenous set of firms producing an exogenous set of products. By ruling out entry by 

assumption, he did not need to worry about imposing additional restrictions to ensure the 

 
6The qualification that the equilibrium markup rate responds monotonically is important. In all three classes, we 
show by means of counterexamples that, if the equilibrium markup rate responds nonmonotonically, entry can be 
procompetitive and yet insufficient or it can be anticompetitive and yet excessive in some range of parameter values. 
7A choke price exists if demand for a product goes to zero at a finite price. There exists no choke price under CES. 
8For example, Dixit and Stiglitz (1977, Section II) extended their monopolistic competition model to a class of 
demand systems, which have been further explored by Behrens and Murata (2007), Zhelobodko, Kokovin, Parenti, 
and Thisse (2012), Dhingra and Morrow (2019), Latzer, Matsuyama, and Parenti (2019), among many others. 
Though Dixit and Stiglitz called this class, “Variable Elasticity Case,” the well-known Bergson’s Law states that, 
within this class of demand systems, they are homothetic if and only if they are CES. In other words, any departure 
from CES within this class introduces nonhomotheticity. See Parenti, Thisse, and Ushchev (2017) and Thisse and 
Ushchev (2018) for more discussions on this issue with extensive references. 
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existence and uniqueness of the free-entry equilibrium, as we do, and he did not address any of 

the issues we are interested in. To the best of our knowledge, this is the first paper to offer a full 

characterization of the free-entry equilibrium of monopolistic competition models under 

symmetric H.S.A., H.D.I.A., and H.I.I.A., which we hope would be useful for many other 

applications.9 

Indeed, very few have ever investigated the question of excessive vs. insufficient entry in 

monopolistic competition even under nonhomothetic, non-CES demand systems. Exceptions are 

Dixit and Stiglitz (1977, Section II), Dhingra and Morrow (2019), Nocco, Ottaviano, and Salto 

(2014) and Behrens, Mion, Murata, and Südekum (2020). The latter two used the parametric 

families of non-CES demand systems that rule out anticompetitive entry. Although the 

nonparametric demand system used by both Dixit and Stiglitz and Dhingra and Morrow is 

flexible enough to allow for the possibility of both procompetitive and anticompetitive entry, 

neither of them investigated how the condition for excessive vs. insufficient entry is related to 

the condition for procompetitive vs. anticompetitive entry. Due to the nonhomotheticity, which 

introduces additional effects of a market size increase, we do not expect our results to be 

extended to their settings. 

The rest of the paper is organized as follows. In Section 2, we present what we call the 

Dixit-Stiglitz environment, the common setting across all three classes. Then, we turn to each of 

the three classes, H.S.A. (Section 3), H.D.I.A. (Section 4), and H.I.I.A. (Section 5). We start with 

H.S.A. because it is the easiest of the three.10 However, these three sections are written in such a 

way that they can be read independently and in any order. Indeed, we have made conscious effort 

to keep the structure of these sections as similar as possible. In each section, we first define the 

class of symmetric homothetic demand systems, and explain its key properties. Then, we address 

the firm’s behavior, impose the conditions that ensure the existence and uniqueness of symmetric 

free-entry equilibrium, and solve for it explicitly (Propositions 1, 4, and 7, respectively). Then, 

 
9 In related work, Matsuyama and Ushchev (2020b) study parametric families of asymmetric H.S.A, H.D.I.A., and 
H.I.I.A., which features a constant pass-through rate, common across otherwise heterogenous monopolistically 
competitive firms without entry. The goal of that paper is to propose asymmetric demand systems for monopolistic 
competition that are tractable even with firms that are heterogenous in many dimensions. 
10For example, under symmetric H.S.A., the condition that rules out asymmetric equilibria also ensures the 
uniqueness of symmetric free-entry equilibrium. Under symmetric H.D.I.A. and H.I.I.A., the two separate conditions 
are required. The cases of symmetric H.D.I.A. and H.I.I.A. also differ from each other in subtle ways.  For example, 
the condition that ensures the existence of the unique symmetric equilibrium is enough to ensure the existence of the 
social optimum allocation under H.I.I.A., but not under H.D.I.A. 
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we conduct the comparative statics to characterize the condition for procompetitive vs. 

anticompetitive entry (Propositions 2, 5, and 8, respectively), and perform the welfare analysis to 

characterize the condition for excessive vs. insufficient entry (Propositions 3, 6, and 9, 

respectively). Then, we investigate the connection between the two conditions (Theorems 1, 2, 

and 3, respectively), and illustrate the theorems by three examples; one with global monotonicity 

(Examples 1, 4, and 7, respectively), one with a choke price (Examples 2, 5, and 8, respectively), 

and one without global monotonicity (Examples 3, 6, and 9, respectively). We conclude in 

Section 6. Technical proofs for some lemmas related to H.D.I.A. and H.I.I.A. are gathered in the 

two appendices. 

 

2.  The Dixit-Stiglitz Environment 

Consider the economy endowed with 𝐿𝐿 units of the single factor of production, which we 

shall call “labor” and take as the numeraire.  Labor is used to produce a continuum of varieties of 

differentiated intermediate inputs, which are in turn assembled to produce the single final good. 

2.1.  Competitive Final Goods Producers and Their Demand for Intermediate Inputs 

The final good is produced competitively by using CRS technology, given by 𝑋𝑋 = 𝑋𝑋(𝐱𝐱), 

where 𝐱𝐱 = {𝑥𝑥𝜔𝜔;  𝜔𝜔 ∈ Ω} is a quantity vector of intermediate inputs, with 𝜔𝜔 being the index of a 

particular input variety, and Ω being the set of input varieties available.  It is assumed that 𝑋𝑋(𝐱𝐱) 

satisfies linear homogeneity, strict monotonicity, quasi-concavity, and symmetry, for each Ω.  

The unit cost function corresponding to 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) can be obtained by: 

 𝑃𝑃 =  𝑃𝑃(𝐩𝐩) ≡ 𝑚𝑚𝑚𝑚𝑚𝑚
𝐱𝐱
�𝐩𝐩𝐱𝐱 = ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝜔𝜔Ω �𝑋𝑋(𝐱𝐱) ≥ 1� , (1) 

where 𝐩𝐩 = {𝑝𝑝𝜔𝜔;  𝜔𝜔 ∈ Ω} is a price vector of intermediate inputs, and 𝑃𝑃(𝐩𝐩) also satisfies linear 

homogeneity, strict monotonicity, quasi-concavity, and symmetry, for each Ω.  Conversely, 

starting from any linear homogeneous, strictly monotonic, quasi-concave and symmetric 𝑃𝑃(𝐩𝐩), 

one could recover the underlying linear homogenous, strictly monotonic, quasi-concave and 

symmetric production function as follows: 

 𝑋𝑋 =  𝑋𝑋(𝐱𝐱) ≡ 𝑚𝑚𝑚𝑚𝑚𝑚
𝐩𝐩

�𝐩𝐩𝐱𝐱 = ∫ 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝜔𝜔Ω �𝑃𝑃(𝐩𝐩) ≥ 1�. (2) 

Thus, either 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩)  can be used as a primitive of this CRS technology.   

 As is well-known from the duality theory, the cost minimization by competitive 

producers generates the demand curve and the inverse demand curve for each input, 
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𝑥𝑥𝜔𝜔 = 𝑋𝑋(𝐱𝐱)
𝜕𝜕𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

;            𝑝𝑝𝜔𝜔 = 𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑋𝑋(𝐱𝐱)
𝜕𝜕𝑥𝑥𝜔𝜔

, 

from either of which one could show, using Euler’s theorem on linear homogeneous functions,  

𝐩𝐩𝐱𝐱 = � 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝜔𝜔
Ω

= 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱). 

Furthermore, the market share of each input can be expressed as  
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝐩𝐩𝐱𝐱

=
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) =  
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

 =  
𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

, 

and the condition for a pair of inputs to be gross substitutes (i.e., the Hicks-Allen elasticity of 

substitution between the two is greater than one) can be written as: 

−
𝜕𝜕 ln �

𝑥𝑥𝜔𝜔1
𝑥𝑥𝜔𝜔2

�

𝜕𝜕 ln �
𝑝𝑝𝜔𝜔1
𝑝𝑝𝜔𝜔2

�
= −

𝜕𝜕 ln �
𝜕𝜕𝑃𝑃(𝐩𝐩) 𝜕𝜕𝑝𝑝𝜔𝜔1⁄
𝜕𝜕𝑃𝑃(𝐩𝐩) 𝜕𝜕𝑝𝑝𝜔𝜔2⁄ �

𝜕𝜕 ln �
𝑝𝑝𝜔𝜔1
𝑝𝑝𝜔𝜔2

�
= −

𝜕𝜕 ln �
𝑥𝑥𝜔𝜔1
𝑥𝑥𝜔𝜔2

�

𝜕𝜕 ln �
𝜕𝜕𝑋𝑋(𝐱𝐱) 𝜕𝜕𝑥𝑥𝜔𝜔1⁄
𝜕𝜕𝑋𝑋(𝐱𝐱) 𝜕𝜕𝑥𝑥𝜔𝜔2⁄ �

 > 1. 

2.2.Monopolistically Competitive Differentiated Intermediate Inputs Producers 

There is a continuum of intermediate input producing firms, also indexed by 𝜔𝜔 ∈ Ω, each 

producing a single variety of its own.  They share the same IRS technology: producing 𝑥𝑥 > 0 

units of input requires 𝜓𝜓𝑥𝑥 + 𝐹𝐹 units of labor, where 𝐹𝐹 > 0 is the fixed cost of entry, and 𝜓𝜓 > 0 

the marginal cost of production. (Recall that labor is taken as the numeraire.)  Being 

monopolistically competitive, each firm sets its price and/or its quantity to maximize profit, 

subject to the downward-sloping demand curve it faces with the aggregate variables taken as 

given.  There is free entry/exit, so that the maximized profit is equal to the fixed cost of entry, 𝐹𝐹, 

and hence the net profit is equal to zero in equilibrium.   Thus, for each active firm 𝜔𝜔 ∈ Ω, 

𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔 = 𝜓𝜓𝑥𝑥𝜔𝜔 + 𝐹𝐹 holds, and hence 

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐩𝐩𝐱𝐱 = � 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔𝑑𝑑𝜔𝜔
Ω

= � (𝜓𝜓𝑥𝑥𝜔𝜔 + 𝐹𝐹)𝑑𝑑𝜔𝜔
Ω

 = 𝜓𝜓� 𝑥𝑥𝜔𝜔𝑑𝑑𝜔𝜔
Ω

+ 𝑉𝑉𝐹𝐹 = 𝐿𝐿, 

where 𝑉𝑉 ≡ |Ω| is the Lebesgue measure of Ω.  Thus, the aggregate market size is given by the 

total labor supply, 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = 𝐿𝐿. 

 

2.3.CES Benchmark 

The above setup is ubiquitous as a building block in many applied general equilibrium 

fields, particularly in international trade and macroeconomics (both in business cycles and 
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economic growth).  In addition, the vast majority of studies in these literatures assumes the 

assembly technology of the final good to be symmetric CES with gross substitutes: 

𝑋𝑋 = 𝑋𝑋(𝐱𝐱) = 𝑍𝑍 �� 𝑥𝑥𝜔𝜔
1−1𝜎𝜎𝑑𝑑𝜔𝜔

Ω
�

𝜎𝜎
𝜎𝜎−1

⟺ 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) =
1
𝑍𝑍
�� 𝑝𝑝𝜔𝜔1−𝜎𝜎𝑑𝑑𝜔𝜔
Ω

�

1
1−𝜎𝜎

, 

which implies 

𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱) = �

𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)/𝑍𝑍

�
1−1𝜎𝜎

 = �
𝑝𝑝𝜔𝜔

𝑍𝑍𝑃𝑃(𝐩𝐩)
�
1−𝜎𝜎

 , 

where 𝜎𝜎 > 1 is the (exogenous and constant) elasticity of substitution between each pair of 

inputs, and 𝑍𝑍 > 0 a productivity parameter. 

It is well-known (and will be verified later in this paper) that the CES assumption has 

some strong implications in this setup. First, it guarantees the equilibrium is unique and 

symmetric, 𝑝𝑝𝜔𝜔 = 𝑝𝑝 and 𝑥𝑥𝜔𝜔 = 𝑥𝑥 for all 𝜔𝜔 ∈ Ω. Second, at this unique equilibrium,  

• each firm sells its own variety at the (common) exogenous markup rate; in particular, it is 

independent of market size, 𝐿𝐿;  

• the equilibrium allocation is optimal; in particular, the equilibrium mass of firms that enter 

(and that of input varieties offered) is optimal. 

Of course, neither of these two results, the market size neutrality on the markup rate, and the 

optimality of equilibrium entry, is robust. Depending on how we depart from the knife-edge CES 

assumption, we could have either the case of procompetitive entry or the case of anticompetitive 

entry, in which the markup rate goes either down or up in response to entry caused by a market 

size increase, as well as the case of excessive entry or the case of insufficient entry.  But how are 

the cases of procompetitive or anticompetitive entry related to the cases of excessive or 

insufficient entry?  We explore this question, using three alternative classes of CRS technologies, 

which are pairwise disjoint except that each contains CES as a knife-edge case. 

 

3.  Dixit-Stiglitz under H.S.A. 

3.1.H.S.A. Demand System 

We call a symmetric CRS technology, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩), homothetic with a single 

aggregator (H.S.A.) if the market share of any input 𝜔𝜔, as a function of  𝐩𝐩, can be written as: 
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 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝐩𝐩𝐱𝐱

=
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱)
=
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝐿𝐿

=  
𝜕𝜕 ln𝑃𝑃(𝐩𝐩)
𝜕𝜕 ln 𝑝𝑝𝜔𝜔

= 𝑠𝑠 �
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)

�. 
(3) 

Here, 𝑠𝑠:ℝ++ → ℝ+ is the market share function, and it is assumed to be twice continuously 

differentiable and strictly decreasing as long as 𝑠𝑠(𝑧𝑧) > 0, with lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞ and 

 lim𝑧𝑧→�̅�𝑧𝑠𝑠(𝑧𝑧) = 0, where 𝑧𝑧̅ ≡ inf{𝑧𝑧 > 0|𝑠𝑠(𝑧𝑧) = 0}, which can be finite or infinite, and 𝐴𝐴(𝐩𝐩) is 

linear homogenous in 𝐩𝐩, defined implicitly and uniquely by 

 
� 𝑠𝑠 �

𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)

�𝑑𝑑𝜔𝜔
Ω

 = 1, 
 (4) 

which ensures, by construction, that the market shares of all inputs are added up to one.11 By 

integrating eq.(3), one could verify that the unit cost function, 𝑃𝑃(𝐩𝐩), is related to 𝐴𝐴(𝐩𝐩), as: 

 
ln �

𝑃𝑃(𝐩𝐩)
𝐴𝐴(𝐩𝐩)� = 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑐𝑐.−� � �

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
�̅�𝑧

𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄

� 𝑑𝑑𝜔𝜔
Ω

, 
(5) 

and it satisfies the linear homogeneity, monotonicity, quasi-concavity and symmetry and so does 

the production function, 𝑋𝑋(𝐱𝐱) = 𝐿𝐿 𝑃𝑃(𝐩𝐩)⁄ .12 

Eqs.(3)-(4) state that the market share of any input 𝜔𝜔 is decreasing in its relative price, 

which is defined as its own price, 𝑝𝑝𝜔𝜔 , divided by the common price aggregator, 𝐴𝐴(𝐩𝐩).  Notice 

that 𝐴𝐴(𝐩𝐩) is independent of 𝜔𝜔. Thus, it is a common measure of the “toughness” of competition 

for all varieties, as it captures “the average price” against which the relative prices of all inputs 

are measured. In other words, one could keep track of all the cross-price effects in the demand 

system by looking at a single aggregator, 𝐴𝐴(𝐩𝐩), which is the key feature of H.S.A.13  The 

monotonicity of 𝑠𝑠(∙), combined with the assumptions, lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞ and  lim𝑧𝑧→�̅�𝑧𝑠𝑠(𝑧𝑧) = 0, 

ensures that 𝐴𝐴(𝐩𝐩) is defined uniquely by eq.(4), for any 𝑉𝑉 ≡ |Ω|, the Lebesgue measure of Ω.  

 
11 For any market share function, 𝑠𝑠:ℝ++ → ℝ+, satisfying the above conditions, a class of the market share 
functions, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝑧𝑧) for 𝜆𝜆 > 0, generates the same demand system, with 𝐴𝐴𝜆𝜆(𝐩𝐩) = 𝜆𝜆𝐴𝐴(𝐩𝐩), because 
 𝑠𝑠𝜆𝜆(𝑝𝑝𝜔𝜔 𝐴𝐴𝜆𝜆(𝐩𝐩)⁄ ) = 𝑠𝑠(𝜆𝜆𝑝𝑝𝜔𝜔 𝐴𝐴𝜆𝜆(𝐩𝐩)⁄ ) = 𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ).  In this sense, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝑧𝑧) for 𝜆𝜆 > 0 are all equivalent.  
12See Matsuyama and Ushchev (2017; Proposition 1-i)), which proved the existence of the underlying CRS 
production functions for more general cases, including the cases of asymmetry and gross complementarity.  
13On the other hand, the assumption that 𝑠𝑠(∙), is independent of 𝜔𝜔 is not a defining feature of H.S.A.; this is due to 
the symmetry of the production technology. More generally, H.S.A. class of demand systems is defined by the 
property that the market share of 𝜔𝜔 is given by 𝑠𝑠𝜔𝜔(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ ), where 𝐴𝐴(𝐩𝐩) is the unique solution to 
∫ 𝑠𝑠𝜔𝜔(𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ )𝑑𝑑𝜔𝜔Ω  = 1.  Note that  𝑠𝑠𝜔𝜔(∙) depends on 𝜔𝜔 but 𝐴𝐴(∙) does not. 
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The assumption that 𝑠𝑠(∙) is strictly decreasing means that inputs are gross substitutes.  To 

see this, one could show from eq.(3) that the elasticity of substitution between a pair of inputs, 

𝜔𝜔1 and 𝜔𝜔2, evaluated at the same price, is  

−
𝜕𝜕 ln�𝑥𝑥𝜔𝜔1 𝑥𝑥𝜔𝜔2⁄ �
𝜕𝜕 ln�𝑝𝑝𝜔𝜔1 𝑝𝑝𝜔𝜔2⁄ �

�
𝑝𝑝𝜔𝜔1=𝑝𝑝𝜔𝜔2=𝑝𝑝

=            𝜁𝜁 �
𝑝𝑝

𝐴𝐴(𝐩𝐩)
� > 1 

where 𝜁𝜁: (0, 𝑧𝑧̅) → (1,∞) is defined by: 

 
𝜁𝜁(𝑧𝑧) ≡ 1 −

𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) > 1. 

 

Note that 𝜁𝜁(∙) is continuously differentiable for 𝑧𝑧 ∈ (0, 𝑧𝑧̅), and lim
𝑧𝑧→�̅�𝑧

𝜁𝜁(𝑧𝑧) = ∞ if 𝑧𝑧̅ < ∞.  

Conversely, from any continuously differentiable 𝜁𝜁: (0, 𝑧𝑧̅) → (1,∞), satisfying lim
𝑧𝑧→�̅�𝑧

𝜁𝜁(𝑧𝑧) = ∞ if 

𝑧𝑧̅ < ∞, one could recover the market share function as follows:  

𝑠𝑠(𝑧𝑧) = exp ��
1 − 𝜁𝜁(𝜉𝜉)

𝜉𝜉
𝑑𝑑𝜉𝜉

𝑧𝑧

𝑧𝑧0
�, 

where 𝑧𝑧0 ∈ (0, 𝑧𝑧̅) is a constant. 14  Hence, we could also use 𝜁𝜁(∙) as a primitive of symmetric 

H.S.A. with gross substitutes, instead of the market share function, 𝑠𝑠(∙).  

Note also that we allow for the possibility of 𝑧𝑧̅ < ∞, that is, the existence of the choke 

(relative) price; if 𝑧𝑧̅ = ∞, the choke price does not exist and demand for each input always 

remains positive for any positive price vector. 

Symmetric CES with gross substitutes is a special case of H.S.A., generated by 𝑠𝑠(𝑧𝑧) =

𝛾𝛾𝑧𝑧1−𝜎𝜎 (𝜎𝜎 > 1).  In this case, 𝑃𝑃(𝐩𝐩) = 𝑐𝑐𝐴𝐴(𝐩𝐩), where 𝑐𝑐 > 0 is a constant, and 𝑧𝑧̅ = ∞, so the choke 

price does not exist. Symmetric translog is another special case, generated by 𝑠𝑠(𝑧𝑧) =

max{𝛾𝛾 ln(𝑧𝑧̅ 𝑧𝑧⁄ ) , 0}, with the choke price, 𝑧𝑧̅ < ∞. In this case, 𝑃𝑃(𝐩𝐩) ≠ 𝑐𝑐𝐴𝐴(𝐩𝐩) for any constant 𝑐𝑐.   

It turns out that, with the sole exception of CES, the RHS of eq.(5) depends on 𝐩𝐩, and hence 

𝑃𝑃(𝐩𝐩) ≠ 𝑐𝑐𝐴𝐴(𝐩𝐩) for any constant 𝑐𝑐, as will be shown in the Corollary 2 of Lemma 2.15  This 

should not come as a total surprise. After all, 𝐴𝐴(𝐩𝐩) captures the cross-price effects in the demand 

 
14This constant implies that 𝑠𝑠(∙) is determined up to a positive scalar multiplier.  However, 𝛾𝛾𝑠𝑠(𝑧𝑧) with 𝛾𝛾 > 0 
generates the same H.S.A. technology. All we need is to renormalize the indexation of varieties, as 
∫  𝛾𝛾𝑠𝑠(𝑝𝑝𝜔𝜔 𝐴𝐴⁄ )𝑑𝑑𝜔𝜔Ω  = ∫  𝛾𝛾𝑠𝑠(𝑝𝑝𝜔𝜔′ 𝐴𝐴⁄ )𝑑𝑑𝜔𝜔′

Ω = 1, with 𝜔𝜔′ = 𝛾𝛾𝜔𝜔. 
15This holds also for asymmetric H.S.A., as well as H.S.A. with gross complements.  See Matsuyama and Ushchev 
(2017; Proposition 1-iii))  
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system, while 𝑃𝑃(𝐩𝐩) captures the productivity (or welfare) effects of price changes; there is no 

reason to think that they should move together in general. 

 

3.2.Profit Maximization By Input Producing Firms under H.S.A.  

The profit of firm 𝜔𝜔 ∈ Ω is given by 𝜋𝜋𝜔𝜔 = (𝑝𝑝𝜔𝜔 − 𝜓𝜓)𝑥𝑥𝜔𝜔 − 𝐹𝐹, which can be written, using 

eq.(3), as:  

 
𝜋𝜋𝜔𝜔 = �1 −

𝜓𝜓 𝐴𝐴(𝐩𝐩)⁄
𝑧𝑧𝜔𝜔

� 𝑠𝑠(𝑧𝑧𝜔𝜔)𝐿𝐿 − 𝐹𝐹, 
 

where 𝑧𝑧𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄  is its relative price.  Firm 𝜔𝜔 chooses its relative price 𝑧𝑧𝜔𝜔 to maximize 𝜋𝜋𝜔𝜔, 

taking the aggregate variables, 𝐴𝐴(𝐩𝐩), as given.  The FOC is  

 𝑧𝑧𝜔𝜔 �1 −
1

𝜁𝜁(𝑧𝑧𝜔𝜔)� =
𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩) �1 −

1
𝜁𝜁(𝑧𝑧𝜔𝜔)� =

𝜓𝜓
𝐴𝐴(𝐩𝐩), (6) 

and the SOC is 

𝜁𝜁(𝑧𝑧𝜔𝜔) − 1 +
𝑧𝑧𝜔𝜔𝜁𝜁′(𝑧𝑧𝜔𝜔)
𝜁𝜁(𝑧𝑧𝜔𝜔) > 0. 

In what follows, we impose the following assumption to ensure that the FOC is sufficient for the 

global optimum. 

 

Assumption S1:  For all 𝑧𝑧 ∈ (0, 𝑧𝑧), 

𝑑𝑑
𝑑𝑑𝑧𝑧

�𝑧𝑧 �1 −
1

𝜁𝜁(𝑧𝑧)�� =
1

𝜁𝜁(𝑧𝑧) �𝜁𝜁
(𝑧𝑧) − 1 +

𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧) � > 0. 

Or equivalently, for all 𝑧𝑧 ∈ (0, 𝑧𝑧̅),  

𝑑𝑑
𝑑𝑑𝑧𝑧

ln�
𝑠𝑠(𝑧𝑧)
𝜁𝜁(𝑧𝑧)� = −

1
𝑧𝑧
�𝜁𝜁(𝑧𝑧) − 1 +

𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧) � < 0. 

 

Under S1, the LHS of eq.(6) is strictly increasing in 𝑧𝑧𝜔𝜔.  Hence, eq.(6) gives the unique profit-

maximizing price for each firm.  Thus, all firms set the same price, 𝑝𝑝𝜔𝜔 = 𝑝𝑝, or 𝑧𝑧𝜔𝜔 = 𝑧𝑧, and 

produce the same amount, 𝑥𝑥𝜔𝜔 = 𝑥𝑥.  Hence, under S1, asymmetric equilibria do not exist.  Note 

also that 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄  is strictly decreasing under S1; this ensures the uniqueness of the symmetric 

equilibrium, as will be seen below. 
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3.3.Symmetric Free-Entry Equilibrium under H.S.A. 

A symmetric free-entry equilibrium under H.S.A. satisfies the following conditions: 

H.S.A. integral condition, given by eq. (4) under symmetry: 

 𝑠𝑠(𝑧𝑧)𝑉𝑉 = 1. (7) 

Firm’s pricing formula, given by FOC, eq.(6) under symmetry: 

 1 −
𝜓𝜓
𝑝𝑝

=
1

𝜁𝜁(𝑧𝑧) (8) 

Zero-profit (free-entry) condition: 

 (𝑝𝑝 − 𝜓𝜓)𝑥𝑥 = 𝐹𝐹 (9) 

Resource constraint: 

 (𝜓𝜓𝑥𝑥 + 𝐹𝐹)𝑉𝑉 = 𝐿𝐿. (10) 

Note that, from eq.(9) and eq.(10),  

 𝑝𝑝𝑥𝑥𝑉𝑉 = 𝑃𝑃𝑋𝑋 = 𝐿𝐿. (11) 

By combining eqs.(7), (8), (9) and (11), 

𝐹𝐹
𝐿𝐿

=
(𝑝𝑝 − 𝜓𝜓)𝑥𝑥

𝐿𝐿
= �1 −

𝜓𝜓
𝑝𝑝
�
𝑝𝑝𝑥𝑥
𝐿𝐿

=
1

𝜁𝜁(𝑧𝑧)
1
𝑉𝑉

=
𝑠𝑠(𝑧𝑧)
𝜁𝜁(𝑧𝑧). 

Under S1, RHS of this equation is strictly decreasing in 𝑧𝑧 ∈ (0, 𝑧𝑧̅). Furthermore, 

lim𝑧𝑧→0 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄ = ∞ and lim𝑧𝑧→�̅�𝑧 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄ = 0. Hence, for each 𝐿𝐿 𝐹𝐹⁄ > 0, the equilibrium 

value of 𝑧𝑧, 𝑧𝑧𝐸𝐸 ∈ (0, 𝑧𝑧̅), is uniquely pinned down by 

 𝑠𝑠(𝑧𝑧𝐸𝐸)
𝜁𝜁(𝑧𝑧𝐸𝐸) =

𝐹𝐹
𝐿𝐿

, 
(12) 

and 𝑧𝑧𝐸𝐸 is increasing in 𝐿𝐿 𝐹𝐹⁄ . By inserting this value into eqs.(7), (8), and (9),  

 𝑉𝑉𝐸𝐸 =
1

𝑠𝑠(𝑧𝑧𝐸𝐸) =
1

𝜁𝜁(𝑧𝑧𝐸𝐸)
𝐿𝐿
𝐹𝐹

,  

 
𝑝𝑝𝐸𝐸 =

𝜁𝜁(𝑧𝑧𝐸𝐸)𝜓𝜓
𝜁𝜁(𝑧𝑧𝐸𝐸) − 1

> 0, 
(13) 

 
𝑥𝑥𝐸𝐸 =

[𝜁𝜁(𝑧𝑧𝐸𝐸) − 1]
𝜓𝜓

𝐹𝐹 > 0, 
 

from which one could also show 

 1
𝐴𝐴𝐸𝐸

=
𝑧𝑧𝐸𝐸

𝑝𝑝𝐸𝐸
=
𝑧𝑧𝐸𝐸

𝜓𝜓
�1 −  

1
𝜁𝜁(𝑧𝑧𝐸𝐸)� =

𝑧𝑧𝐸𝐸

𝜓𝜓
�1 −  

𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧𝐸𝐸)�, 
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and, using eq.(5), 
 

ln
𝑋𝑋𝐸𝐸

𝐿𝐿
=  ln

1
𝑃𝑃𝐸𝐸

= ln
𝑧𝑧𝐸𝐸

𝜓𝜓
�1 −  

𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧𝐸𝐸)� +

1
𝑠𝑠(𝑧𝑧𝐸𝐸) �

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝑧𝑧

𝑧𝑧𝐸𝐸

+ 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑐𝑐. 
 

Thus, we have shown: 

Proposition 1.  Under S1, no asymmetric equilibria exist.  Furthermore, there exists a unique 

symmetric free-entry equilibrium under H.S.A. for each 𝐿𝐿 𝐹𝐹⁄ > 0, given by eq.(12) and eq.(13).  

 

3.4.Comparative Statics under H.S.A.: Procompetitive versus Anticompetitive 

We now turn to the comparative statics.  

Proposition 2. Assume S1.  At the unique symmetric equilibrium in monopolistic competition 

under H.S.A., given by eq.(12) and eq.(13),  

Procompetitive: 
𝜁𝜁′(𝑧𝑧𝐸𝐸) > 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝐿𝐿
< 0;  0 <

𝜕𝜕 ln𝑉𝑉𝐸𝐸

𝜕𝜕 ln 𝐿𝐿
< 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝐿𝐿
> 0; 

 

Neutral (CES): 
𝜁𝜁′(𝑧𝑧𝐸𝐸) = 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝐿𝐿
= 0; 

𝜕𝜕 ln𝑉𝑉𝐸𝐸

𝜕𝜕 ln 𝐿𝐿
= 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝐿𝐿
= 0; 

 

Anticompetitive: 
𝜁𝜁′(𝑧𝑧𝐸𝐸) < 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝐿𝐿
> 0; 

𝜕𝜕 ln𝑉𝑉𝐸𝐸

𝜕𝜕 ln 𝐿𝐿
> 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝐿𝐿
< 0. 

 

Proof:  Since eq.(12) implies 𝜕𝜕𝑧𝑧𝐸𝐸 𝜕𝜕𝐿𝐿⁄ > 0 under S1, this follows from eq.(13).∎ 

 

It is well-known that, in the knife-edge case of CES, the market size effect is neutral on the 

markup rate (𝜕𝜕𝑝𝑝𝐸𝐸 𝜕𝜕𝐿𝐿⁄ = 0) and the mass of firms increases proportionally (𝜕𝜕 ln𝑉𝑉𝐸𝐸 𝜕𝜕 ln 𝐿𝐿⁄ =

1) without any effect on the firm size (𝜕𝜕𝑥𝑥𝐸𝐸 𝜕𝜕𝐿𝐿⁄ = 0). Thus, the expansion takes place only at the 

extensive margin.  In the case of 𝜁𝜁′(𝑧𝑧𝐸𝐸) > 0, the market size effect is procompetitive, 

(𝜕𝜕𝑝𝑝𝐸𝐸 𝜕𝜕𝐿𝐿⁄ < 0) i.e., an increase in 𝐿𝐿 reduces the markup rate.  This forces each firm to operate at 

a larger scale in order to break even (𝜕𝜕𝑥𝑥𝐸𝐸 𝜕𝜕𝐿𝐿⁄ = 0), and hence some expansion also takes place 

at the intensive margin (𝜕𝜕 ln𝑉𝑉𝐸𝐸 𝜕𝜕 ln 𝐿𝐿⁄ < 1).  In the opposite case of 𝜁𝜁′(𝑧𝑧𝐸𝐸) < 0, the market size 

effect is anticompetitive, i.e., the markup rate increases in response to an increase in 𝐿𝐿, which 

causes a more-than-proportionate increase in the mass of firms and forces each firm to operate at 

a smaller scale.   
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It should be also pointed out that, when the condition for the procompetitive effect holds 

globally, 𝜁𝜁′(∙) > 0, it automatically implies S1.  However, the opposite does not hold.  Hence, 

S1 does not rule out the anticompetitive case, 𝜁𝜁′(∙) < 0. 

 

3.5.Welfare Analysis under H.S.A.: Excessive versus Insufficient 

We now turn to the welfare analysis under H.S.A..  Because 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) is strictly quasi-

concave in the interior and symmetric, the optimal allocation that maximizes 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) must be 

symmetric, 𝑥𝑥𝜔𝜔 = 𝑥𝑥 for all 𝜔𝜔 ∈ Ω.  Or equivalently, the optimal allocation that minimizes 𝑃𝑃 =

𝑃𝑃(𝐩𝐩) must be symmetric, 𝑝𝑝𝜔𝜔 = 𝑝𝑝 for all 𝜔𝜔 ∈ Ω.   Hence, from eq.(5), the optimal allocation can 

be obtained by choosing 𝑧𝑧 = 𝑝𝑝/𝐴𝐴 to maximize  

ln
𝑋𝑋
𝐿𝐿

=  ln
1
𝑃𝑃

= ln
1
𝐴𝐴

+ 𝑉𝑉�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝑧𝑧

𝑧𝑧

+ 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑐𝑐. 

subject to the constraints, eq.(7), eq.(10), and eq.(11) which can be combined to yield: 

 1
𝐴𝐴

=
𝑧𝑧
𝜓𝜓
�1 −  

𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧)� 

(14) 

Hence, the optimal allocation can be obtained by choosing 𝑧𝑧 to maximize:  

 
 ln
𝑋𝑋
𝐿𝐿

= ln
1
𝑃𝑃

= 𝑊𝑊(𝑧𝑧) ≡ ln
𝑧𝑧
𝜓𝜓
�1 −  

𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧)�+ Φ(𝑧𝑧)  + 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑐𝑐. 

(15) 

where 𝑊𝑊(𝑧𝑧) is the objective function and  

 
Φ(𝑧𝑧) ≡

1
𝑠𝑠(𝑧𝑧)�

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧

𝑧𝑧

𝑑𝑑𝜉𝜉. 
(16) 

The following lemma shows that 𝑧𝑧𝐸𝐸 , the equilibrium value of 𝑧𝑧, given by eq.(12) 

generally fails to maximize the RHS of eq.(15).  Indeed, it maximizes the RHS of eq.(14) 

instead.  In other words, the unique symmetric equilibrium minimizes 𝐴𝐴 = 𝐴𝐴(𝐩𝐩), not 𝑃𝑃 = 𝑃𝑃(𝐩𝐩).  

Lemma 1. Under S1, eq.(14) is unimodal, and reaches the maximum at 𝑧𝑧 = 𝑧𝑧𝐸𝐸 . 

Proof.  Differentiating the RHS of eq.(14) yields  

1 −  
𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧) + 𝑧𝑧

𝐹𝐹 𝐿𝐿⁄

�𝑠𝑠(𝑧𝑧)�
2 𝑠𝑠

′(𝑧𝑧) = 1 −
𝐹𝐹 𝐿𝐿⁄
𝑠𝑠(𝑧𝑧)�1 −

𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) � =  1 −

𝐹𝐹
𝐿𝐿
𝜁𝜁(𝑧𝑧)
𝑠𝑠(𝑧𝑧). 

From S1, this is strictly decreasing in 𝑧𝑧, and hence the RHS of eq.(14) is strictly concave and 

reaches its maximum with respect to 𝑧𝑧 when  
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1 −
𝐹𝐹
𝐿𝐿
𝜁𝜁(𝑧𝑧)
𝑠𝑠(𝑧𝑧) = 0 

which is equivalent to eq.(12), satisfied if and only if 𝑧𝑧 = 𝑧𝑧𝐸𝐸 .  This completes the proof. ∎ 

Lemma 1 states that the equilibrium allocation maximizes only the first term of 𝑊𝑊(𝑧𝑧) in eq. (15).  

The second term, Φ(𝑧𝑧), given in eq.(16), represents externalities that are ignored in a 

decentralized equilibrium.  To understand the property of this externality term, notice that it can 

be rewritten as: 

1 +
1

Φ(𝑧𝑧) ≡ 1 +
𝑠𝑠(𝑧𝑧)

∫ 𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉

= 1 +
−∫ 𝑠𝑠′(𝜉𝜉)𝑧𝑧

𝑧𝑧 𝑑𝑑𝜉𝜉

∫ 𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉

=
∫ 𝜁𝜁(𝜉𝜉) 𝑠𝑠(𝜉𝜉)

𝜉𝜉 𝑑𝑑𝜉𝜉𝑧𝑧
𝑧𝑧

∫ 𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉

= �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧

𝑑𝑑𝜉𝜉, 

where 𝑤𝑤(𝜉𝜉) ≡ 𝑠𝑠(𝜉𝜉) 𝜉𝜉⁄

∫ 𝑠𝑠(𝜉𝜉′) 𝜉𝜉′⁄𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉′

, satisfying ∫ 𝑤𝑤(𝜉𝜉)𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉 = 1.  Hence, log-differentiating eq.(16) yields 

𝑧𝑧Φ′(𝑧𝑧)
Φ(𝑧𝑧) = −

𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) −

1
Φ(𝑧𝑧) = 𝜁𝜁(𝑧𝑧) − 1 −

1
Φ(𝑧𝑧) = 𝜁𝜁(𝑧𝑧) −�𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)

𝑧𝑧

𝑧𝑧

𝑑𝑑𝜉𝜉, 

from which the next lemma and its two corollaries follow: 

Lemma 2. 

Φ′(𝑧𝑧) ⋚ 0 ⟺ 𝜁𝜁(𝑧𝑧) ⋚ �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧

𝑑𝑑𝜉𝜉. 

Corollary 1: Assume that 𝜁𝜁′(⋅) does not change sign over (𝑧𝑧0, 𝑧𝑧), where 0 < 𝑧𝑧0 < 𝑧𝑧. Then, for 

all 𝑧𝑧 ∈ (𝑧𝑧0, 𝑧𝑧) 

 𝜁𝜁′(⋅) ⋛ 0 ⟹Φ′(⋅) ⋚ 0. 

Corollary 2. 𝑃𝑃(𝐩𝐩) = 𝑐𝑐𝐴𝐴(𝐩𝐩) with 𝑐𝑐 > 0 is a constant, only in the case of CES.  

Proof. 16  Using eqs.(14)-(15), we obtain ln𝐴𝐴(𝐩𝐩) 𝑃𝑃(𝐩𝐩)⁄ = Φ(𝑧𝑧) + 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑐𝑐.  Hence, 𝑃𝑃(𝐩𝐩) =

𝑐𝑐𝐴𝐴(𝐩𝐩) ⟺Φ′(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (0, 𝑧𝑧) ⟺ 𝜁𝜁′(𝑧𝑧) = 0 for all 𝑧𝑧 ∈ (0, 𝑧𝑧) ⟺ CES. ∎ 

Lemma 3.  𝑊𝑊(𝑧𝑧) is unimodal, and reaches its peak at 𝑧𝑧𝑂𝑂 , given by the unique solution to 

  𝐿𝐿
𝐹𝐹

=  
1

𝑠𝑠(𝑧𝑧) +
1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉

=
1

𝑠𝑠(𝑧𝑧) �1 +
1

Φ(𝑧𝑧)� =
1

𝑠𝑠(𝑧𝑧)�𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧

𝑑𝑑𝜉𝜉. 
(17) 

and 𝑧𝑧𝑂𝑂 is increasing in 𝐿𝐿 𝐹𝐹⁄ . 

 
16As already discussed, Corollary 2 is a special case of Matsuyama and Ushchev (2017; Proposition 1-iii)).  
Nevertheless, we offer this proof, because it is much simpler due to the symmetry and gross substitutability.  



 
 

Page 17 of 53 
 

Proof: Differentiating 𝑊𝑊(𝑧𝑧), defined in eq.(15), yields 

𝑊𝑊′(𝑧𝑧) =
1
𝑧𝑧

+

𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧)2

𝐿𝐿
𝐹𝐹 −  1

𝑠𝑠(𝑧𝑧)
+ Φ′(𝑧𝑧). 

Differentiating Φ(𝑧𝑧), eq.(16), yields 

Φ′(𝑧𝑧) = −
𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧)2 �

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧

𝑧𝑧

𝑑𝑑𝜉𝜉 −
1
𝑧𝑧

. 

By combining these two expressions,  

𝑊𝑊′(𝑧𝑧) =
𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧)2 �

1
𝐿𝐿
𝐹𝐹 −  1

𝑠𝑠(𝑧𝑧)
−�

𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧

𝑧𝑧

𝑑𝑑𝜉𝜉�. 

Because the term in the square bracket is strictly increasing, 𝑊𝑊(𝑧𝑧) is unimodal with  

𝑊𝑊′(𝑧𝑧) ⋛ 0 ⟺ 𝑧𝑧 ⋚  𝑧𝑧𝑂𝑂 , 

where 𝑧𝑧𝑂𝑂 is given by  
𝐿𝐿
𝐹𝐹

=  
1

𝑠𝑠(𝑧𝑧) +
1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉

, 

whose RHS is increasing in 𝑧𝑧, because 𝑠𝑠(𝑧𝑧) and ∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉  are both decreasing in 𝑧𝑧.  Hence, 𝑧𝑧𝑂𝑂 

is uniquely defined and is increasing in 𝐿𝐿 𝐹𝐹⁄ . ∎ 

We are now ready to state the welfare property of the equilibrium entry under H.S.A.. 

Proposition 3. Assume S1. Then, at the unique symmetric equilibrium in monopolistic 

competition under H.S.A., given by eq.(12) and eq.(13),  𝑉𝑉𝐸𝐸 , the equilibrium mass of firms that 

enter = the equilibrium mass of varieties produced, and 𝑉𝑉𝑂𝑂 , the mass of the optimal mass of 

firms that enter = the optimal mass of varieties produced, satisfy 

𝑉𝑉𝐸𝐸 ⋛ 𝑉𝑉𝑂𝑂 ⟺ 𝜁𝜁(𝑧𝑧𝐸𝐸) ⋚ �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧𝐸𝐸

𝑑𝑑𝜉𝜉. 

In particular,  

Excessive Entry: 𝜁𝜁′(𝑧𝑧) > 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (𝑧𝑧𝐸𝐸 , 𝑧𝑧) ⟹ 𝑉𝑉𝐸𝐸 > 𝑉𝑉𝑂𝑂  

Optimal Entry (CES): 𝜁𝜁′(𝑧𝑧) = 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (𝑧𝑧𝐸𝐸 , 𝑧𝑧) ⟹ 𝑉𝑉𝐸𝐸 = 𝑉𝑉𝑂𝑂  

Insufficient Entry: 𝜁𝜁′(𝑧𝑧) < 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (𝑧𝑧𝐸𝐸 , 𝑧𝑧) ⟹ 𝑉𝑉𝐸𝐸 < 𝑉𝑉𝑂𝑂  
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Proof. By combining eq.(12) and eq.(17), 

𝜁𝜁(𝑧𝑧𝐸𝐸)
𝑠𝑠(𝑧𝑧𝐸𝐸) =

𝐿𝐿
𝐹𝐹

=
1

𝑠𝑠(𝑧𝑧𝑂𝑂) +
1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧𝑂𝑂 𝑑𝑑𝜉𝜉

. 

Since 𝑠𝑠(𝑧𝑧) and ∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧 𝑑𝑑𝜉𝜉  are both decreasing in 𝑧𝑧, 

𝑧𝑧𝐸𝐸 ⋛ 𝑧𝑧𝑂𝑂 ⟺
𝜁𝜁(𝑧𝑧𝐸𝐸)
𝑠𝑠(𝑧𝑧𝐸𝐸) =

1
𝑠𝑠(𝑧𝑧𝑂𝑂) +

1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧𝑂𝑂 𝑑𝑑𝜉𝜉

⋚
1

𝑠𝑠(𝑧𝑧𝐸𝐸) +
1

∫ 𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑧𝑧
𝑧𝑧𝐸𝐸 𝑑𝑑𝜉𝜉

=
1

𝑠𝑠(𝑧𝑧𝐸𝐸) �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧𝐸𝐸

𝑑𝑑𝜉𝜉. 

Hence, 

𝑉𝑉𝐸𝐸 =
1

𝑠𝑠(𝑧𝑧𝐸𝐸) ⋛ 𝑉𝑉𝑂𝑂 =
1

𝑠𝑠(𝑧𝑧𝑂𝑂) ⟺ 𝑧𝑧𝐸𝐸 ⋛ 𝑧𝑧𝑂𝑂 ⟺ 𝜁𝜁(𝑧𝑧𝐸𝐸) ⋚ �𝜁𝜁(𝜉𝜉)𝑤𝑤(𝜉𝜉)
𝑧𝑧

𝑧𝑧𝐸𝐸

𝑑𝑑𝜉𝜉, 

which completes the proof. ∎ 

 

3.6. Main H.S.A. Theorem and Some Examples  

We are now ready to state the main properties of H.S.A. in the following theorem, by 

consolidating Propositions 1, 2, and 3.  In doing so, we take into account that 𝑧𝑧𝐸𝐸 is 

monotonically increasing in 𝐿𝐿 𝐹𝐹⁄  and takes any value in (0, 𝑧𝑧), as 𝐿𝐿 𝐹𝐹⁄  varies from zero to 

infinity, and that the existence of the choke price, 𝑧𝑧 < ∞, implies lim
𝑧𝑧→�̅�𝑧

𝜁𝜁(𝑧𝑧) = ∞, and hence 

𝜁𝜁′(𝑧𝑧) > 0 for 𝑧𝑧 sufficiently close to 𝑧𝑧, which means that entry is procompetitive and excessive 

for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

Theorem 1: Consider monopolistic competition under symmetric H.S.A. with gross substitutes. 

Assume S1 to ensure that there exists a unique equilibrium, which is symmetric and given by 

eq.(12) and eq.(13).  At this unique symmetric equilibrium, entry is, 

• procompetitive and excessive for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 𝜁𝜁′(𝑧𝑧) > 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (0, 𝑧𝑧); 

• neutral and optimal for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 𝜁𝜁′(𝑧𝑧) = 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (0,∞), that is, under CES; 

• anticompetitive and insufficient for any 𝐿𝐿 𝐹𝐹⁄ > 0, if  𝜁𝜁′(𝑧𝑧) < 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 ∈ (0,∞). 

Furthermore, in the presence of the choke price, 𝑧𝑧 < ∞, entry is procompetitive and excessive 

for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 
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One important implication of this theorem is that, for those who believe in the empirical validity 

of Marshall’s second law of demand, i.e., the price elasticity of demand for each product is 

increasing in its own price, holding the aggregates fixed, entry is not only procompetitive but 

also excessive under H.S.A. 

 We now turn to some examples to illustrate Theorem 1. 

 

Example 1: Perturbed CES, H.S.A. with global monotonicity  

𝑠𝑠(𝑧𝑧) = 𝑧𝑧1−𝜎𝜎 exp �−𝛿𝛿(𝜎𝜎 − 1)�
𝑔𝑔(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝑧𝑧

𝑐𝑐
� ⟺ 𝜁𝜁(𝑧𝑧) = 𝜎𝜎 + 𝛿𝛿(𝜎𝜎 − 1)𝑔𝑔(𝑧𝑧), 

where 𝑔𝑔(𝑧𝑧) satisfies 𝑔𝑔′(𝑧𝑧) > 0  for all 𝑧𝑧 > 0 with 𝑔𝑔(0) = 0 and 𝑔𝑔(∞) = 1 and 𝜅𝜅 ≡

sup{𝑧𝑧𝑔𝑔′(𝑧𝑧)|𝑧𝑧 > 0} < ∞.  For example,  

𝑔𝑔(𝑧𝑧) =
𝑧𝑧

𝜂𝜂 + 𝑧𝑧
, 𝜂𝜂 > 0 ⟹  𝜅𝜅 =

1
4

 ; 

𝑔𝑔(𝑧𝑧) = 1 − 𝑒𝑒−𝜇𝜇𝑧𝑧 , 𝜇𝜇 > 0 ⟹ 𝜅𝜅 = 𝑒𝑒−1. 

We also impose the restrictions that 𝜎𝜎 > 1 and 𝛿𝛿 > −𝜎𝜎 (𝜅𝜅 + 2𝜎𝜎 − 1)⁄ > −1 to ensure the gross 

substitutability, i.e., 𝜁𝜁(𝑧𝑧) > 1 for all 𝑧𝑧 ∈ (0,∞) as well as S1.17  Clearly, 𝛿𝛿 = 0 corresponds to 

the knife-edge case of CES, where entry is neutral and optimal.  If 𝛿𝛿 > 0, entry is procompetitive 

and excessive.  And, if −𝜎𝜎 (𝜅𝜅 + 2𝜎𝜎 − 1)⁄ < 𝛿𝛿 < 0, entry is anticompetitive and insufficient. 

 

Example 2: Generalized Translog, H.S.A. with a choke price 

𝑠𝑠(𝑧𝑧) = �
𝛾𝛾(ln(𝑧𝑧̅ 𝑧𝑧⁄ ))𝜂𝜂 for 𝑧𝑧 < 𝑧𝑧̅

(𝜂𝜂 > 0)
0 for 𝑧𝑧 ≥ 𝑧𝑧̅

 

⟹  𝜁𝜁(𝑧𝑧) = 1 +
𝜂𝜂

ln(𝑧𝑧̅ 𝑧𝑧⁄ ) ,   for 𝑧𝑧 < 𝑧𝑧̅ 

which is strictly increasing in 𝑧𝑧 ∈ (0, 𝑧𝑧̅) with the range (1,∞).  Hence, entry is globally 

procompetitive and excessive.  Homothetic symmetric translog is a special case, where 𝜂𝜂 = 1.18    

 
17For S1, note that it can be rewritten as [𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧) + 𝑧𝑧𝜁𝜁′(𝑧𝑧) = [𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧) + 𝛿𝛿𝑧𝑧𝑔𝑔′(𝑧𝑧) > 0.  Clearly, this 
holds for 𝛿𝛿 ≥ 0. For 𝛿𝛿 < 0, 𝜁𝜁(𝑧𝑧) > 𝜎𝜎 + 𝛿𝛿 and 𝛿𝛿𝑧𝑧𝑔𝑔′(𝑧𝑧) ≥  𝛿𝛿𝜅𝜅 for all 𝑧𝑧, and hence [𝜁𝜁(𝑧𝑧) − 1]𝜁𝜁(𝑧𝑧) + 𝑧𝑧𝜁𝜁′(𝑧𝑧) >
(𝜎𝜎 + 𝛿𝛿 − 1)(𝜎𝜎 + 𝛿𝛿) + 𝛿𝛿𝜅𝜅 = 𝛿𝛿2 + (2𝜎𝜎 − 1 + 𝜅𝜅)𝛿𝛿 + (𝜎𝜎 − 1)𝜎𝜎 > (2𝜎𝜎 − 1 + 𝜅𝜅)𝛿𝛿 + (𝜎𝜎 − 1)𝜎𝜎 > 0. 
18To see this, eq. (19’) of Feenstra (2003) gives the expression for the market share for each product under translog as 
𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)

𝜕𝜕𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

= 1
𝑁𝑁
− 𝛾𝛾 �ln𝑝𝑝𝜔𝜔 −

1
𝑁𝑁 ∫ ln𝑝𝑝𝜔𝜔′ 𝑑𝑑𝜔𝜔′

Ω � , (𝛾𝛾 > 0), where 𝑁𝑁 is the measure of Ω. This can be rewritten as 
𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)

𝜕𝜕𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝𝜔𝜔

= −𝛾𝛾 ln � 𝑝𝑝𝜔𝜔
𝐴𝐴(𝐩𝐩)

�, with 𝑠𝑠(𝑧𝑧) ≡ 𝛾𝛾max{ln(1/𝑧𝑧) , 0} and ln𝐴𝐴(𝐩𝐩) ≡ 1
𝛾𝛾𝑁𝑁

+ 1
𝑁𝑁 ∫ ln 𝑝𝑝𝜔𝜔′ 𝑑𝑑𝜔𝜔′

Ω . 
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 The assumption of the global monotonicity of 𝜁𝜁(∙) in Theorem 1 is important. Otherwise, 

entry could be procompetitive and yet insufficient, or anticompetitive and yet excessive, as the 

next example illustrates. 

Example 3: Perturbed CES, H.S.A. without global monotonicity  

Consider the following family of H.S.A technologies:  

𝜁𝜁(𝑧𝑧) ≡ 1 −
𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) = 1 + (𝜎𝜎 − 1)

𝛿𝛿𝑧𝑧𝑔𝑔′(𝑧𝑧) + 1
1 + 𝛿𝛿(𝜎𝜎 − 1)𝑔𝑔(𝑧𝑧), 

where 𝜎𝜎 > 1, 𝛿𝛿 can be either positive or negative (but sufficiently small in absolute value to 

ensure that 𝜁𝜁(𝑧𝑧) satisfies S1), while 𝑔𝑔(𝑧𝑧) is twice continuously differentiable, single-peaked, and 

satisfies 𝑔𝑔(0) = 𝑔𝑔(∞) = 0,  and sup|𝑔𝑔′(𝑧𝑧)| < ∞.  Let �̃�𝑧 > 0 be the maximizer of 𝑔𝑔(𝑧𝑧), with 

𝑔𝑔′(�̃�𝑧) = 0 > 𝑔𝑔′′(�̃�𝑧).  For example, 

𝑔𝑔(𝑧𝑧) = 𝑧𝑧 (𝜆𝜆 + 𝑧𝑧2)⁄ , 𝜆𝜆 > 0 ⟹ �̃�𝑧 = √𝜆𝜆; 

𝑔𝑔(𝑧𝑧) = 𝑧𝑧𝑒𝑒−𝜇𝜇𝑧𝑧,𝜇𝜇 > 0 ⟹  �̃�𝑧 = 1 𝜇𝜇⁄ . 

It is readily verified that the externality term in the welfare function is given by 

Φ(𝑧𝑧) ≡
1

𝑠𝑠(𝑧𝑧)�
𝑠𝑠(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
∞

𝑧𝑧
=

1
𝜎𝜎 − 1

+ 𝛿𝛿𝑔𝑔(𝑧𝑧). 

From Lemma 1, 𝑊𝑊′(𝑧𝑧𝐸𝐸) = Φ′(𝑧𝑧𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝑧𝑧𝐸𝐸), and from Lemma 3, 𝑊𝑊′(𝑧𝑧𝐸𝐸) ⋛ 0 ⟺

𝑧𝑧𝐸𝐸 ⋚ 𝑧𝑧𝑂𝑂 ⟺ 𝑉𝑉𝐸𝐸 ⋚ 𝑉𝑉𝑂𝑂.  Hence, 𝛿𝛿𝑔𝑔′(𝑧𝑧𝐸𝐸) ⋛ 0 ⟺ 𝑉𝑉𝐸𝐸 ⋚ 𝑉𝑉𝑂𝑂.  Thus, entry is insufficient for 𝑧𝑧𝐸𝐸 < �̃�𝑧 

and excessive for 𝑧𝑧𝐸𝐸 > �̃�𝑧 for 𝛿𝛿 > 0, while entry is excessive for 𝑧𝑧𝐸𝐸 < �̃�𝑧 and insufficient for 𝑧𝑧𝐸𝐸 >

�̃�𝑧 for 𝛿𝛿 < 0.   On the other hand, evaluating 𝜁𝜁′(𝑧𝑧) at 𝑧𝑧 = �̃�𝑧 yields: 

𝜁𝜁′(�̃�𝑧) = 𝛿𝛿
�̃�𝑧𝑔𝑔′′(�̃�𝑧)
Φ(�̃�𝑧) ⋛ 0 ⟺ 𝛿𝛿 ⋚ 0. 

Thus, entry is anticompetitive in the vicinity of �̃�𝑧 for 𝛿𝛿 > 0, while entry is procompetitive in the 

vicinity of �̃�𝑧 for 𝛿𝛿 < 0. 

By combining these two observations, we conclude that entry is procompetitive and yet 

insufficient for 𝛿𝛿 < 0 and 𝑧𝑧𝐸𝐸 slightly higher than �̃�𝑧, or equivalently, 𝐿𝐿 𝐹𝐹⁄  slightly higher than 

𝜁𝜁(�̃�𝑧) 𝑠𝑠(�̃�𝑧)⁄ , while it is anticompetitive and yet excessive for 𝛿𝛿 > 0 and 𝑧𝑧𝐸𝐸 slightly lower than �̃�𝑧, 

or equivalently, 𝐿𝐿 𝐹𝐹⁄  slightly lower than 𝜁𝜁(�̃�𝑧) 𝑠𝑠(�̃�𝑧)⁄ . 
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3.7.H.S.A. Demand System: An Alternative Formulation 

Before proceeding, it should be pointed out that there exists an alternative (but 

equivalent) definition of H.S.A..  That is, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) is called homothetic with a 

single aggregator (H.S.A.) if the market share of input 𝜔𝜔, as a function of 𝐱𝐱, can be written as: 

 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔
𝐩𝐩𝐱𝐱

=
𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔

𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱)
=  
𝜕𝜕 ln𝑋𝑋(𝐱𝐱)
𝜕𝜕 ln 𝑥𝑥𝜔𝜔

= 𝑠𝑠∗ �
𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)

�. 
 

Here, 𝑠𝑠∗:ℝ++ → ℝ+ is the market share function, and it is assumed to be twice continuously 

differentiable with 0 < 𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 𝑠𝑠∗(𝑦𝑦)⁄ < 1, 𝑠𝑠∗(0) = 0 and 𝑠𝑠∗(∞) = ∞, and 𝐴𝐴∗(𝐱𝐱) is linear 

homogenous in 𝐱𝐱, defined implicitly and uniquely by 

 
� 𝑠𝑠∗ �

𝑥𝑥𝜔𝜔
𝐴𝐴∗(𝐱𝐱)

�𝑑𝑑𝜔𝜔
Ω

 = 1, 
  

which ensures that the market shares of all inputs are added up to one. Thus, the market share of 

input 𝜔𝜔 is a function of its relative quantity, defined as its own quantity 𝑥𝑥𝜔𝜔 divided by the 

common quantity aggregator 𝐴𝐴∗(𝐱𝐱), which is strictly increasing with the elasticity less than one.  

This common quantity aggregator, 𝐴𝐴∗(𝐱𝐱), is related to the production function, 𝑋𝑋(𝐱𝐱), as follows: 

 
ln �

𝑋𝑋(𝐱𝐱)
𝐴𝐴∗(𝐱𝐱)� = 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑐𝑐. + � � �

𝑠𝑠∗(𝜉𝜉)
𝜉𝜉

𝑥𝑥𝜔𝜔 𝐴𝐴∗(𝐱𝐱)⁄

0

𝑑𝑑𝜉𝜉�
Ω

𝑑𝑑𝜔𝜔, 
 

and 𝑋𝑋(𝐱𝐱) = 𝑐𝑐𝐴𝐴∗(𝐱𝐱), with a positive constant 𝑐𝑐 > 0, if and only if 𝑠𝑠∗(𝑦𝑦) = 𝛾𝛾𝑦𝑦1−1/𝜎𝜎, which is the 

case of CES. 

 These two alternative definitions of H.S.A. are isomorphic to each other via the one-to-

one mapping between 𝑠𝑠(𝑧𝑧) ⟷ 𝑠𝑠∗(𝑦𝑦), defined by:  

𝑠𝑠∗(𝑦𝑦) = 𝑠𝑠 �
𝑠𝑠∗(𝑦𝑦)
𝑦𝑦

� ;          𝑠𝑠(𝑧𝑧) = 𝑠𝑠∗ �
𝑠𝑠(𝑧𝑧)
𝑧𝑧
�. 

Differentiating either of these two equalities yields the identity, 

𝜁𝜁∗(𝑦𝑦) ≡ �1 −
𝑦𝑦𝑠𝑠∗′(𝑦𝑦)
𝑠𝑠∗(𝑦𝑦) �

−1

= 𝜁𝜁(𝑧𝑧) ≡ 1 −
𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) > 1, 

where 𝜁𝜁∗(𝑦𝑦) is the price elasticity as a function of 𝑦𝑦𝜔𝜔 ≡ 𝑥𝑥𝜔𝜔 𝐴𝐴∗(𝐱𝐱)⁄ , which shows that the 

condition, 0 < 𝑦𝑦𝑠𝑠∗′(𝑦𝑦) 𝑠𝑠∗(𝑦𝑦)⁄ < 1, is equivalent to 𝑠𝑠′(𝑧𝑧) < 0, the condition for gross 
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substitutability.  Furthermore, the relative quantity, 𝑦𝑦𝜔𝜔 ≡ 𝑥𝑥𝜔𝜔 𝐴𝐴∗(𝐱𝐱)⁄ , and the relative price, 𝑧𝑧𝜔𝜔 ≡

𝑝𝑝𝜔𝜔 𝐴𝐴(𝐩𝐩)⁄ , are negatively related as  

𝑧𝑧𝜔𝜔 =
𝑠𝑠∗(𝑦𝑦𝜔𝜔)
𝑦𝑦𝜔𝜔

;          𝑦𝑦𝜔𝜔 =
𝑠𝑠(𝑧𝑧𝜔𝜔)
𝑧𝑧𝜔𝜔

. 

from which 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔 𝐴𝐴(𝐩𝐩)𝐴𝐴∗(𝐱𝐱)⁄ = 𝑦𝑦𝜔𝜔𝑧𝑧𝜔𝜔 = 𝑠𝑠(𝑧𝑧𝜔𝜔) = 𝑠𝑠∗(𝑦𝑦𝜔𝜔) = 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔 𝐿𝐿⁄ = 𝑝𝑝𝜔𝜔𝑥𝑥𝜔𝜔 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱)⁄ , 

hence that we have the identity, 𝐴𝐴(𝐩𝐩)𝐴𝐴∗(𝐱𝐱) = 𝐿𝐿 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱), or 
𝐴𝐴(𝐩𝐩)
𝑃𝑃(𝐩𝐩) =

𝑋𝑋(𝐱𝐱)
𝐴𝐴∗(𝐱𝐱), 

which is a positive constant if and only if it is CES.  In addition,  

lim
𝑦𝑦→0

𝑠𝑠∗(𝑦𝑦)
𝑦𝑦

= 𝑠𝑠∗′(0) = 𝑧𝑧̅ ≡ inf{𝑧𝑧 > 0|𝑠𝑠(𝑧𝑧) = 0} 

which is the choke price if finite.19   

  Under this alternative (but equivalent) formulation of H.S.A., with the following 

assumption, which is equivalent to S1, 

𝑑𝑑 ln(𝑠𝑠∗(𝑦𝑦) 𝜁𝜁∗(𝑦𝑦)⁄ )  
𝑑𝑑 ln 𝑦𝑦

= 1 −
1

𝜁𝜁∗(𝑦𝑦) −
𝑦𝑦𝜁𝜁∗′(𝑦𝑦)
𝜁𝜁∗(𝑦𝑦) > 0, 

there exists a unique symmetric equilibrium, in which all firms choose 𝑦𝑦𝜔𝜔 ≡ 𝑦𝑦𝐸𝐸 , given by the 

condition, 

𝑠𝑠∗(𝑦𝑦𝐸𝐸)
𝜁𝜁∗(𝑦𝑦𝐸𝐸) =

𝐹𝐹
𝐿𝐿

, 

where 𝑦𝑦𝐸𝐸 is decreasing in 𝐿𝐿 𝐹𝐹⁄ .  Furthermore, entry is procompetitive and excessive for any 

𝐿𝐿 𝐹𝐹⁄ > 0, if 𝜁𝜁∗′(𝑦𝑦) < 0 for all 𝑦𝑦 ∈ (0,∞); neutral and optimal for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 𝜁𝜁∗′(𝑦𝑦) = 0 for 

all 𝑦𝑦 ∈ (0,∞), (i.e., under CES) and anticompetitive and insufficient for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 

𝜁𝜁∗′(𝑦𝑦) > 0 for all 𝑦𝑦 ∈ (0,∞).  Furthermore, in the presence of the choke price, 𝑠𝑠∗′(0) = 𝑧𝑧 < ∞, 

𝜁𝜁∗′(0) = ∞, and hence 𝜁𝜁∗′(𝑦𝑦) < 0 for a sufficiently small 𝑦𝑦, which means that entry is 

procompetitive and excessive for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

 

 

 
19This isomorphism has been shown for the broader class of H.S.A., which allows for asymmetry as well as gross 
complements; see Matsuyama and Ushchev (2017, Section 3, Remark 3).  
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4.  Dixit-Stiglitz under H.D.I.A. (Homothetic Direct Implicit Additivity) 

4.1.H.D.I.A. Demand System  

We call a symmetric CRS technology, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩), homothetic with direct 

implicit additivity (H.D.I.A.)20 if 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) can be defined implicitly by: 

 
� 𝜙𝜙 �

𝑥𝑥𝜔𝜔
𝑋𝑋
�𝑑𝑑𝜔𝜔

Ω
= 1, 

(18) 

where 𝜙𝜙(⋅): ℝ+ → ℝ+ is strictly increasing, strictly concave, and at least thrice continuously 

differentiable with 𝜙𝜙(0) = 0 and 𝜙𝜙(∞) = ∞.    

In the following analysis, both the elasticity of 𝜙𝜙(⋅),  

 
0 < ℰ𝜙𝜙(𝓎𝓎) ≡

𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) < 1, 

(19) 

and the elasticity of 𝜙𝜙′(∙) in its absolute value, 

 
0 < 𝑓𝑓𝜙𝜙(𝓎𝓎) ≡ −

𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) < 1, 

(20) 

play important roles.  The monotonicity of 𝜙𝜙(⋅) and 𝜙𝜙(0) = 0 jointly ensure ℰ𝜙𝜙(⋅) > 0 and the 

concavity of 𝜙𝜙(⋅) ensures ℰ𝜙𝜙(⋅) < 1.  The monotonicity and concavity of 𝜙𝜙(⋅) jointly ensure 

𝑓𝑓𝜙𝜙(⋅) > 0.  In addition, it is necessary to assume that 𝑓𝑓𝜙𝜙(⋅) < 1 to ensure that inputs are gross 

substitutes, as will be seen below.  Note that one could recover 𝜙𝜙(⋅) either from any ℰ𝜙𝜙(∙) or any 

𝑓𝑓𝜙𝜙(∙) satisfying the bounds in eq. (19) and eq.(20) as follows: 

𝜙𝜙(𝓎𝓎) = exp �� ℰ𝜙𝜙(𝜉𝜉)
𝑑𝑑𝜉𝜉
𝜉𝜉

𝓎𝓎

𝓎𝓎0
� ; 

𝜙𝜙(𝓎𝓎) = � exp �−� 𝑓𝑓𝜙𝜙(𝜉𝜉′)
𝑑𝑑𝜉𝜉′

𝜉𝜉′
𝜉𝜉

𝓎𝓎0′
� 𝑑𝑑𝜉𝜉

𝓎𝓎

0
, 

 
20 More generally, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) is H.D.I.A. if it can be defined implicitly by ∫ 𝜙𝜙𝜔𝜔(𝑥𝑥𝜔𝜔 𝑋𝑋(𝐱𝐱)⁄ )𝑑𝑑𝜔𝜔Ω = 1.  It is the 
homothetic restriction of the class of D.I.A. (direct implicit additivity), which can be defined implicitly by 
∫ 𝜙𝜙�𝜔𝜔�𝑥𝑥𝜔𝜔,𝑋𝑋(𝐱𝐱)�𝑑𝑑𝜔𝜔Ω = 1: see Hanoch (1975; Section 2). In contrast, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) is D.E.A. (direct explicit additivity) 

if it can be defined as 𝑋𝑋(𝐱𝐱) = ℳ�∫ 𝜙𝜙�𝜔𝜔(𝑥𝑥𝜔𝜔)𝑑𝑑𝜔𝜔Ω �, where ℳ(∙) is a monotone transformation: see Hanoch (1975; 
Section 2.2). D.E.A. is another subclass of D.I.A., with 𝜙𝜙�𝜔𝜔�𝑥𝑥𝜔𝜔 ,𝑋𝑋(𝐱𝐱)� = 𝜙𝜙�𝜔𝜔(𝑥𝑥𝜔𝜔) ℳ−1(𝑋𝑋(𝐱𝐱))⁄ . Symmetric D.E.A. 
with 𝜙𝜙�𝜔𝜔(∙) = 𝜙𝜙�(∙), is the class of demand systems used by Dixit and Stiglitz (1977, Section II), Behrens and Murata 
(2007), Zhelobodko, Kokovin, Parenti, and Thisse (2012), Dhingra and Morrow (2019), and many others. Although 
D.E.A. and H.D.I.A. are both subclasses of D.I.A., CES is the only common element of D.E.A. and H.D.I.A. 
because D.E.A. cannot be homothetic unless it is CES. 
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where 𝓎𝓎0 > 0 and 𝓎𝓎0
′ > 0 are both constants.21  One could also verify from eq. (19) and eq.(20) 

that ℰ𝜙𝜙(𝓎𝓎) and 𝑓𝑓𝜙𝜙(𝓎𝓎) are related as follows: 

𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑓𝑓𝜙𝜙(𝓎𝓎) − ℰ𝜙𝜙(𝓎𝓎). 

Clearly, CES with gross substitutes is a special case with 𝜙𝜙(𝓎𝓎) = 𝐴𝐴𝓎𝓎1−1𝜎𝜎, and 0 < 𝑓𝑓𝜙𝜙(𝓎𝓎) = 1 −

ℰ𝜙𝜙(𝓎𝓎) = 1 𝜎𝜎⁄ < 1.   

The cost minimization problem, eq.(1) subject to eq.(18) implies that the inverse demand 

curve for each 𝜔𝜔 ∈ Ω can be written as: 

  𝑝𝑝𝜔𝜔 = 𝐵𝐵(𝐩𝐩)𝜙𝜙′ �
𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)�, (21) 

where 𝐵𝐵(𝐩𝐩) is the Lagrange multiplier associated with eq. (18), and it is the linear homogenous 

function in 𝐩𝐩, given by 

� 𝜙𝜙�(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)

��𝑑𝑑𝜔𝜔
Ω

≡ 1. 

From eq.(21), the unit cost function can be written as 

𝑃𝑃(𝐩𝐩) = � 𝑝𝑝𝜔𝜔(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)� 𝑑𝑑𝜔𝜔Ω

. 

Furthermore, the market share of 𝜔𝜔 can be expressed as: 
𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)

𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)

=
𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)

(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)

� =
𝑥𝑥𝜔𝜔
𝐶𝐶∗(𝐱𝐱)𝜙𝜙

′ �
𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)�, 

where 𝐶𝐶∗(𝐱𝐱) ≡ ∫ 𝑥𝑥𝜔𝜔𝜙𝜙′ � 𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)�𝑑𝑑𝜔𝜔Ω  is a linear homogenous function of 𝐱𝐱, and satisfies the 

identity 𝐵𝐵(𝐩𝐩)𝐶𝐶∗(𝐱𝐱) = 𝐿𝐿 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱), because  

𝑃𝑃(𝐩𝐩)
𝐵𝐵(𝐩𝐩) = �

𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)

(𝜙𝜙′)−1 �
𝑝𝑝𝜔𝜔
𝐵𝐵(𝐩𝐩)�𝑑𝑑𝜔𝜔Ω

= � 𝜙𝜙′ �
𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)�

𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)𝑑𝑑𝜔𝜔Ω

=
𝐶𝐶∗(𝐱𝐱)
𝑋𝑋(𝐱𝐱) . 

The above expressions for the market share under H.D.I.A. show that it is a function of the two 

relative prices, 𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄  and 𝑝𝑝𝜔𝜔 𝐵𝐵(𝐩𝐩)⁄ , or a function of the two relative quantities, 𝑥𝑥𝜔𝜔 𝑋𝑋(𝐱𝐱)⁄  and 

 
21These constants imply that 𝜙𝜙(𝓎𝓎) is determined up to a positive scalar multiplier.  However, 𝛾𝛾𝜙𝜙(𝓎𝓎) with 𝛾𝛾 > 0 
generate the same CRS technology. All we need is to renormalize the indices of varieties, as ∫  𝛾𝛾𝜙𝜙(𝑥𝑥𝜔𝜔 𝑋𝑋⁄ )𝑑𝑑𝜔𝜔Ω  =

∫  𝛾𝛾𝜙𝜙(𝑥𝑥𝜔𝜔′ 𝑋𝑋⁄ )𝑑𝑑𝜔𝜔′
Ω = 1, with 𝜔𝜔′ = 𝛾𝛾𝜔𝜔. 
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𝑥𝑥𝜔𝜔 𝐶𝐶∗(𝐱𝐱)⁄ , unless 𝑃𝑃(𝐩𝐩) 𝐵𝐵(𝐩𝐩)⁄ = 𝐶𝐶∗(𝐱𝐱) 𝑋𝑋(𝐱𝐱)⁄  is a positive constant, 𝑐𝑐 > 0, which occurs if and 

only if it is CES. Thus, H.D.I.A. and H.S.A. do not overlap with the sole exception of CES.22 

From the inverse demand curve, eq.(21), the elasticity of substitution between a pair of 

inputs, 𝜔𝜔1 and 𝜔𝜔2, evaluated at the same quantity (hence at the same price) can be expressed as:  

−
𝜕𝜕 ln�𝑥𝑥𝜔𝜔1 𝑥𝑥𝜔𝜔2⁄ �
𝜕𝜕 ln�𝑝𝑝𝜔𝜔1 𝑝𝑝𝜔𝜔2⁄ �

�
𝑥𝑥𝜔𝜔1=𝑥𝑥𝜔𝜔2=𝑥𝑥

 =    
1

𝑓𝑓𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ ) > 1, 

hence 𝑓𝑓𝜙𝜙(𝓎𝓎) < 1 ensures that inputs are gross substitutes.  It should be also clear from eq.(21) 

that the choke price exists if and only if  

𝜙𝜙′(0) = lim
𝓎𝓎→0

exp ��
𝑓𝑓𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝓎𝓎0′

𝓎𝓎
� < ∞, 

which implies lim
𝓎𝓎→0

𝑓𝑓𝜙𝜙(𝓎𝓎) = 0, as well as lim
𝓎𝓎→0

 ℰ𝜙𝜙(𝓎𝓎) = lim
𝓎𝓎→0

𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) 𝓎𝓎⁄

= 𝜙𝜙′(0)
𝜙𝜙′(0) = 1.  

 

4.2.Profit Maximization by Input Producing Firms under H.D.I.A. 

From the inverse demand curve, eq.(21), the profit of firm 𝜔𝜔 ∈ Ω is given by: 

 𝜋𝜋𝜔𝜔 = �𝐵𝐵(𝐩𝐩)𝜙𝜙′ �
𝑥𝑥𝜔𝜔
𝑋𝑋
� − 𝜓𝜓� 𝑥𝑥𝜔𝜔 − 𝐹𝐹.  

Firm 𝜔𝜔 chooses its output, 𝑥𝑥𝜔𝜔 , to maximize its profit 𝜋𝜋𝜔𝜔, taking the aggregate variables, 𝐵𝐵(𝐩𝐩) and 

𝑋𝑋 as given.   Or equivalently, it chooses 𝓎𝓎𝜔𝜔 ≡ 𝓎𝓎 𝑋𝑋⁄  to maximize 

(𝐵𝐵(𝐩𝐩)𝜙𝜙′(𝓎𝓎𝜔𝜔) − 𝜓𝜓)𝓎𝓎𝜔𝜔 . 

The FOC is: 

 𝐵𝐵(𝐩𝐩)[𝜙𝜙′(𝓎𝓎𝜔𝜔) + 𝓎𝓎𝜔𝜔𝜙𝜙′′(𝓎𝓎𝜔𝜔)] = 𝐵𝐵(𝐩𝐩)𝜙𝜙′(𝓎𝓎𝜔𝜔)�1− 𝑓𝑓𝜙𝜙(𝓎𝓎𝜔𝜔)�

= 𝑝𝑝𝜔𝜔�1 − 𝑓𝑓𝜙𝜙(𝓎𝓎𝜔𝜔)� = 𝜓𝜓. 

(22) 

 In what follows, we keep it simple by imposing the following assumption to ensure that the 

FOC is sufficient for the global optimum. 

 

Assumption D1:  For all 𝓎𝓎 > 0, 

 
22This statement is a special case of Proposition 2-(ii) in Matsuyama and Ushchev (2017).  
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  𝓎𝓎𝜙𝜙′′′(𝓎𝓎)
𝜙𝜙′′(𝓎𝓎) + 2 > 0 ⟺

𝓎𝓎𝑓𝑓𝜙𝜙′(𝓎𝓎)
𝑓𝑓𝜙𝜙(𝓎𝓎) + 1 − 𝑓𝑓𝜙𝜙(𝓎𝓎) > 0. 

 

 

Under D1, the LHS of eq.(22) is strictly decreasing in 𝓎𝓎𝜔𝜔.  Hence, eq.(22) gives the unique 

profit-maximizing output for each firm.  Thus, all firms set the same price, 𝑝𝑝𝜔𝜔 = 𝑝𝑝, and produce 

the same amount, 𝑥𝑥𝜔𝜔 = 𝑥𝑥.  Hence, under D1, asymmetric equilibria do not exist.  Unlike in the 

case of H.S.A., the condition that rules out asymmetric equilibria does not ensure the uniqueness 

of a symmetric equilibrium under H.D.I.A., which needs to be introduced separately; see D2 

below.     

4.3.Symmetric Free-Entry Equilibrium under H.D.I.A. 

A symmetric free-entry equilibrium under H.D.I.A. satisfies the following conditions: 

H.D.I.A. integral condition, eq.(18) under symmetry: 

 𝑉𝑉𝜙𝜙 �
𝑥𝑥
𝑋𝑋
� = 1; 
 

(23) 

Firm’s pricing formula, given by FOC, eq.(22) under symmetry: 
 1 −

𝜓𝜓
𝑝𝑝

= 𝑓𝑓𝜙𝜙 �
𝑥𝑥
𝑋𝑋
�, 

 

(24) 

in addition to the zero-profit (free-entry) condition, eq.(9) and the resource constraint, eq.(10).  

For the uniqueness of a symmetric equilibrium, we introduce the following condition: 

Assumption D2: For all 𝓎𝓎 > 0,  

  𝓎𝓎𝜙𝜙′′′(𝓎𝓎)
𝜙𝜙′′(𝓎𝓎) + 1 + 𝑓𝑓𝜙𝜙(𝓎𝓎) + ℰ𝜙𝜙(𝓎𝓎) > 0 ⟺

𝓎𝓎𝑓𝑓𝜙𝜙′(𝓎𝓎)
𝑓𝑓𝜙𝜙(𝓎𝓎) + ℰ𝜙𝜙(𝓎𝓎) > 0.  

 

 
Clearly, D1 implies D2 if  

𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑓𝑓𝜙𝜙(𝓎𝓎)− ℰ𝜙𝜙(𝓎𝓎) < 0, 

and D2 implies D1, if  

𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑓𝑓𝜙𝜙(𝓎𝓎)− ℰ𝜙𝜙(𝓎𝓎) > 0. 

And, D1 and D2 are equivalent if and only if    

𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑓𝑓𝜙𝜙(𝓎𝓎)− ℰ𝜙𝜙(𝓎𝓎) = 0, 
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that is, under and only under CES.  

 To see why D2 ensures the existence and the uniqueness of a symmetric free-entry 

equilibrium, note first that the pricing formula, eq.(24), and the free entry condition, eq.(9), can 

be combined to yield: 

 𝑓𝑓𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ )𝑝𝑝𝑥𝑥 = 𝐹𝐹. (25) 

From eq.(9) and eq.(10), 𝑝𝑝𝑉𝑉𝑥𝑥 = 𝐿𝐿, which can be combined with eq.(25) to obtain: 
𝐿𝐿
𝑉𝑉

= 𝑝𝑝𝑥𝑥 =
𝐹𝐹

𝑓𝑓𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ ), 

which becomes after using the H.D.I.A. condition, eq.(23):  

𝑓𝑓𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ )𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ ) = 𝐹𝐹 𝐿𝐿⁄ . 

The LHS of this equation is increasing in 𝑥𝑥 𝑋𝑋⁄ , because D2 implies 

𝑑𝑑 ln�𝜙𝜙(𝓎𝓎)𝑓𝑓𝜙𝜙(𝓎𝓎)� 
𝑑𝑑 ln𝓎𝓎

=
𝓎𝓎𝜙𝜙′′′(𝓎𝓎)
𝜙𝜙′′(𝓎𝓎) + 1 + 𝑓𝑓𝜙𝜙(𝓎𝓎) + ℰ𝜙𝜙(𝓎𝓎) > 0  for all 𝓎𝓎 > 0. 

Furthermore, lim𝓎𝓎→0𝑓𝑓𝜙𝜙(𝓎𝓎)𝜙𝜙(𝓎𝓎) = 0 and  lim𝓎𝓎→∞𝑓𝑓𝜙𝜙(𝓎𝓎)𝜙𝜙(𝓎𝓎) = ∞. Hence, for each 𝐿𝐿 𝐹𝐹⁄ >

0, the equilibrium value of 𝓎𝓎, 𝓎𝓎𝐸𝐸 ∈ (0,∞), is pinned down uniquely by,  

 𝑓𝑓𝜙𝜙(𝓎𝓎𝐸𝐸)𝜙𝜙(𝓎𝓎𝐸𝐸) = 𝐹𝐹 𝐿𝐿⁄ , (26) 

and 𝓎𝓎𝐸𝐸is decreasing in 𝐿𝐿 𝐹𝐹⁄ . By inserting this value into eq.(23), eq.(24), and eq.(9),   

 𝑉𝑉𝐸𝐸 =
1

𝜙𝜙(𝓎𝓎𝐸𝐸) ;  

 𝑝𝑝𝐸𝐸 =
𝜓𝜓

1 − 𝑓𝑓𝜙𝜙(𝓎𝓎𝐸𝐸) ;  (27) 

 
𝑋𝑋𝐸𝐸 =

𝑥𝑥𝐸𝐸

𝓎𝓎𝐸𝐸 =
𝐿𝐿

𝓎𝓎𝐸𝐸𝑝𝑝𝐸𝐸𝑉𝑉𝐸𝐸
=

[1 − 𝑓𝑓𝜙𝜙(𝓎𝓎𝐸𝐸)]𝜙𝜙(𝓎𝓎𝐸𝐸)
𝜓𝜓𝓎𝓎𝐸𝐸 𝐿𝐿 =

𝜙𝜙(𝓎𝓎𝐸𝐸)𝐿𝐿 − 𝐹𝐹
𝜓𝜓𝓎𝓎𝐸𝐸 > 0. 

 

Thus, we have shown: 

Proposition 4. Under D1, no asymmetric equilibria exist.  Furthermore, under D1 and D2, there 

exists a unique symmetric free-entry equilibrium under H.D.I.A. for each 𝐿𝐿 𝐹𝐹⁄ > 0, given by 

eq.(26) and eq.(27). 

 

4.4.Comparative Statics under H.D.I.A.: Procompetitive versus Anticompetitive 

We now turn to the comparative statics. 
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Proposition 5. Assume D1 and D2.  At the unique symmetric equilibrium in monopolistic 

competition under H.D.I.A., given by eq.(26) and eq.(27), 

Procompetitive: 
𝑓𝑓𝜙𝜙′ (𝓎𝓎𝐸𝐸) > 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝐿𝐿
< 0;  0 <

𝜕𝜕 ln𝑉𝑉𝐸𝐸

𝜕𝜕 ln 𝐿𝐿
< 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝐿𝐿
> 0 

 

Neutral (CES): 
𝑓𝑓𝜙𝜙′ (𝓎𝓎𝐸𝐸) = 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝐿𝐿
= 0; 

𝜕𝜕 ln𝑉𝑉𝐸𝐸

𝜕𝜕 ln 𝐿𝐿
= 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝐿𝐿
= 0 

 

Anticompetitive: 
𝑓𝑓𝜙𝜙′ (𝓎𝓎𝐸𝐸) < 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝐿𝐿
> 0; 

𝜕𝜕 ln𝑉𝑉𝐸𝐸

𝜕𝜕 ln 𝐿𝐿
> 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝐿𝐿
< 0. 

 

 

Proof:  Since eq.(26) implies 𝜕𝜕𝓎𝓎𝐸𝐸 𝜕𝜕𝐿𝐿⁄ < 0 under D2, this follows from eq.(27).∎ 

 

The conditions for the procompetitive vs. anticompetitive cases under H.D.I.A. are analogous to 

those under H.S.A.  For example, recall that the condition for the procompetitive case under 

H.S.A. is 𝜁𝜁′(𝑧𝑧𝐸𝐸) = 𝜁𝜁′(𝑝𝑝𝐸𝐸 𝐴𝐴𝐸𝐸⁄ ) > 0,  that is, the price elasticity of demand goes up as its price 

goes up, holding the aggregates fixed. This is nothing but Marshall’s 2nd law of demand.  Here, 

under H.D.I.A., the condition is 𝑓𝑓𝜙𝜙′ (𝓎𝓎𝐸𝐸) = 𝑓𝑓𝜙𝜙′ (𝑥𝑥𝐸𝐸 𝑋𝑋𝐸𝐸⁄ ) > 0; that is, the price elasticity of 

demand for an input goes down as its quantity goes up, holding the aggregate fixed. This is 

another way of stating Marshall’s 2nd law of demand.  Note also that, if the condition for the 

procompetitive case holds globally, 𝑓𝑓𝜙𝜙′ (∙) > 0, D1 and D2 hold automatically.  However, neither 

D1 nor D2 necessarily implies 𝑓𝑓𝜙𝜙′ (∙) > 0.  This means that D1 and D2 do not rule out the 

anticompetitive case, 𝑓𝑓𝜙𝜙′ (∙) < 0. 

 

4.5.Welfare Analysis under H.D.I.A.: Excessive versus Insufficient 

We now turn to the welfare analysis under H.D.I.A.  The social planner’s problem is to 

maximize social welfare subject to the resource constraint. From the symmetry and strict quasi-

concavity of 𝑋𝑋 = 𝑋𝑋(𝐱𝐱), defined by eq.(18), the solution is clearly symmetric. The problem can 

be thus stated as: 

max
(𝑥𝑥,𝑉𝑉)

 𝑋𝑋           𝑠𝑠. 𝑐𝑐.   (𝜓𝜓𝑥𝑥 + 𝐹𝐹)𝑉𝑉 = 𝐿𝐿;   𝑉𝑉𝜙𝜙(𝑥𝑥 𝑋𝑋⁄ ) = 1 

Using 𝓎𝓎 = 𝑥𝑥 𝑋𝑋⁄ , this can be written as 

max
(𝑥𝑥,𝓎𝓎)

𝑥𝑥
𝓎𝓎

          𝑠𝑠. 𝑐𝑐.       𝜓𝜓𝑥𝑥 =  
𝐿𝐿
𝑉𝑉
− 𝐹𝐹 = 𝜙𝜙(𝓎𝓎)𝐿𝐿 − 𝐹𝐹 ≥ 0 
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or, equivalently, as 

max
𝓎𝓎≥𝓎𝓎

𝑊𝑊(𝓎𝓎) ≡
𝜙𝜙(𝓎𝓎) − 𝐹𝐹 𝐿𝐿⁄

𝓎𝓎
,𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒 𝓎𝓎 ≡ 𝜙𝜙−1(𝐹𝐹 𝐿𝐿⁄ ) > 0. 

To make this social planner’s problem well-defined, we need to introduce: 

Assumption D3:  lim
𝓎𝓎→∞

ℰ𝜙𝜙(𝓎𝓎) < 1.23 

Lemma 4.  Under D3, 𝑊𝑊(𝓎𝓎) is unimodal, with  

𝑊𝑊′(𝓎𝓎) ⋛ 0 ⟺
𝐹𝐹
𝐿𝐿
⋛ 𝜙𝜙(𝓎𝓎) − 𝜙𝜙′(𝓎𝓎)𝓎𝓎 = 𝜙𝜙(𝓎𝓎)�1− ℰ𝜙𝜙(𝓎𝓎)� ⟺ 𝓎𝓎 ⋚ 𝓎𝓎𝑂𝑂 

where 𝓎𝓎𝑂𝑂 is the socially optimal value of 𝓎𝓎, uniquely given by 

𝜙𝜙(𝓎𝓎𝑂𝑂) − 𝜙𝜙′(𝓎𝓎𝑂𝑂)𝓎𝓎𝑂𝑂 = 𝜙𝜙(𝓎𝓎𝑂𝑂)�1 − ℰ𝜙𝜙(𝓎𝓎𝑂𝑂)� =
𝐹𝐹
𝐿𝐿

 

and 𝓎𝓎𝑂𝑂 is strictly decreasing in 𝐿𝐿 𝐹𝐹⁄ .  

Proof:   By differentiating 𝑊𝑊(𝓎𝓎), it is easily verified that 

𝓎𝓎2𝑊𝑊′(𝓎𝓎) =
𝐹𝐹
𝐿𝐿
− [𝜙𝜙(𝓎𝓎) − 𝜙𝜙′(𝓎𝓎)𝓎𝓎] =

𝐹𝐹
𝐿𝐿
− 𝜙𝜙(𝓎𝓎)�1 − ℰ𝜙𝜙(𝓎𝓎)�, 

which is strictly decreasing, because 

𝑑𝑑[𝜙𝜙(𝓎𝓎) − 𝜙𝜙′(𝓎𝓎)𝓎𝓎]
𝑑𝑑𝓎𝓎

= −𝜙𝜙′′ (𝓎𝓎)𝓎𝓎 > 0. 

Furthermore, 𝓎𝓎2𝑊𝑊′(𝓎𝓎) = 𝓎𝓎𝜙𝜙′(𝓎𝓎) > 0 and 𝓎𝓎2𝑊𝑊′(𝓎𝓎) < 0 for a sufficiently large 𝓎𝓎, because 

D3 implies 𝜙𝜙(𝓎𝓎)�1− ℰ𝜙𝜙(𝓎𝓎)� ⟶ ∞ as 𝓎𝓎 ⟶ ∞. Hence, 𝑊𝑊(𝓎𝓎) reaches its global maximum at 

𝓎𝓎𝑂𝑂 ∈ (𝓎𝓎,∞), given by 𝑊𝑊′(𝓎𝓎𝑂𝑂) = 0 ⟺𝜙𝜙(𝓎𝓎𝑂𝑂) − 𝜙𝜙′(𝓎𝓎𝑂𝑂)𝓎𝓎𝑂𝑂 = 𝐹𝐹 𝐿𝐿⁄ , which is strictly 

decreasing in 𝐿𝐿 𝐹𝐹⁄ , and 𝑊𝑊′(𝓎𝓎) ⋛ 0 ⟺𝓎𝓎 ⋚ 𝓎𝓎𝑂𝑂. ∎ 

 We are now ready to state the welfare property of the equilibrium allocation. 

Proposition 6. Assume D1, D2 and D3.  Then, at the unique symmetric equilibrium in 

monopolistic competition under H.D.I.A.,given by eq.(26) and eq.(27), 𝑉𝑉𝐸𝐸 , the equilibrium mass 

of firms that enter = the equilibrium mass of varieties produced and 𝑉𝑉𝑂𝑂 , the mass of the optimal 

mass of firms that enter = the optimal mass of varieties produced,, satisfy 

Excessive Entry: 𝓎𝓎𝐸𝐸ℰ𝜙𝜙′(𝓎𝓎𝐸𝐸)
ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) = 1 − 𝑓𝑓𝜙𝜙(𝓎𝓎𝐸𝐸) − ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) < 0 ⟺  𝑉𝑉𝐸𝐸 >  𝑉𝑉𝑂𝑂 

 
23 Assumption D3 rules out the pathological case, where the social planner can produce an unbounded output, 𝑋𝑋, by 
letting 𝑉𝑉 ⟶ 0 and 𝑥𝑥 ⟶ ∞.  Note that D3 does not rule out the choke price, which would imply lim

𝓎𝓎→0
ℰ𝜙𝜙(𝓎𝓎) = 1. 
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Optimal Entry (CES): 𝓎𝓎𝐸𝐸ℰ𝜙𝜙′(𝓎𝓎𝐸𝐸)
ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) = 1 − 𝑓𝑓𝜙𝜙(𝓎𝓎𝐸𝐸)− ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) = 0 ⟺  𝑉𝑉𝐸𝐸 =  𝑉𝑉𝑂𝑂 

Insufficient Entry: 𝓎𝓎𝐸𝐸ℰ𝜙𝜙′(𝓎𝓎𝐸𝐸)
ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) = 1 − 𝑓𝑓𝜙𝜙(𝓎𝓎𝐸𝐸) − ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) > 0 ⟺  𝑉𝑉𝐸𝐸 <  𝑉𝑉𝑂𝑂 

Proof:  From eq.(26) and Lemma 4,   

𝓎𝓎𝐸𝐸 ⋚ 𝓎𝓎𝑂𝑂 ⟺ 𝑓𝑓𝜙𝜙(𝓎𝓎𝐸𝐸)𝜙𝜙(𝓎𝓎𝐸𝐸) =
𝐹𝐹
𝐿𝐿
⋛ 𝜙𝜙(𝓎𝓎𝐸𝐸)�1 − ℰ𝜙𝜙(𝓎𝓎𝐸𝐸)� ⟺ 𝑓𝑓𝜙𝜙(𝓎𝓎𝐸𝐸) ⋛ 1 − ℰ𝜙𝜙(𝓎𝓎𝐸𝐸) 

Since 𝑉𝑉𝐸𝐸𝜙𝜙(𝓎𝓎𝐸𝐸) = 1 = 𝑉𝑉𝑂𝑂𝜙𝜙(𝓎𝓎𝑂𝑂),𝓎𝓎𝐸𝐸 ⋚ 𝓎𝓎𝑂𝑂 ⟺ 𝑉𝑉𝐸𝐸 ⋛ 𝑉𝑉𝑂𝑂 , this completes the proof. ∎ 

 

Note that, in order for the equilibrium entry to be optimal for a range of the parameter values 

under H.D.I.A.,  𝓎𝓎ℰ𝜙𝜙′(𝓎𝓎)

ℰ𝜙𝜙(𝓎𝓎) = 1 − 𝑓𝑓𝜙𝜙(𝓎𝓎) − ℰ𝜙𝜙(𝓎𝓎) = 0 must hold for the relevant range of 𝓎𝓎, that 

is, under and only under CES. Thus, CES offers the borderline case between the cases of 

excessive entry and insufficient entry within H.D.I.A.. 

 

4.6.Main H.D.I.A. Theorem and Some Examples 

Proposition 5 states that the sign of 𝑓𝑓𝜙𝜙′ (𝓎𝓎𝐸𝐸) determines whether entry is procompetitive 

or anticompetitive, while Proposition 6 states the sign of ℰ𝜙𝜙′ (𝓎𝓎𝐸𝐸) determines whether entry is 

excessive or insufficient.  Hence, one might think, unlike under H.S.A, that these conditions are 

unrelated to each other, and that both procompetitive entry and anticompetitive entry can be 

either excessive or insufficient under H.D.I.A.. However, the next lemma shows that there exists 

a tight connection between the two conditions. 

 

Lemma 5:  Assume that 𝑓𝑓𝜙𝜙′ (⋅) does not change sign over (0,𝓎𝓎0), where 0 < 𝓎𝓎0 ≤ ∞. Then, for 

all 𝓎𝓎 ∈ (0,𝓎𝓎0), 

𝑓𝑓𝜙𝜙′ (⋅) ⋛ 0 ⟹  ℰ𝜙𝜙′ (⋅) ⋚ 0. 

Proof: See Appendix A. ∎ 

Here is the implication of Lemma 5. Suppose that, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is procompetitive 

at the unique symmetric equilibrium given by eq.(26) and eq.(27). That means that 𝑓𝑓𝜙𝜙′ (𝓎𝓎) > 0 

for all 𝓎𝓎 < 𝓎𝓎0, where 𝓎𝓎0 satisfies 𝑓𝑓𝜙𝜙(𝓎𝓎0)𝜙𝜙(𝓎𝓎0)(𝐿𝐿 𝐹𝐹⁄ )0 = 1.  Then, Lemma 5 tells us ℰ𝜙𝜙′ (𝓎𝓎) <
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0 for all 𝓎𝓎 < 𝓎𝓎0. Hence, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is excessive at the unique symmetric 

equilibrium. Likewise, suppose that, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is anticompetitive at the unique 

symmetric equilibrium given by eq.(26) and eq.(27). That means that 𝑓𝑓𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 < 𝓎𝓎0. 

Then, Lemma 5 tells us ℰ𝜙𝜙′ (𝓎𝓎) > 0 for all 𝓎𝓎 < 𝓎𝓎0.  Hence, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is 

insufficient at the unique symmetric equilibrium. 

We are now ready to summarize the main properties of H.D.I.A. in the next theorem, by 

consolidating Propositions 4, 5, and 6 and Lemma 5. In doing so, we take into account that 𝓎𝓎𝐸𝐸 is 

strictly decreasing in 𝐿𝐿 𝐹𝐹⁄  and takes any value in (0,∞), as 𝐿𝐿 𝐹𝐹⁄  varies from zero to infinity, and 

that the existence of the choke price, 𝜙𝜙′(0) < ∞, implies lim
𝓎𝓎→0

𝑓𝑓𝜙𝜙(𝓎𝓎) = 0 and lim
𝓎𝓎→0

 ℰ𝜙𝜙(𝓎𝓎) = 1, 

and hence 𝑓𝑓𝜙𝜙′ (𝓎𝓎) > 0 and ℰ𝜙𝜙′ (𝓎𝓎) < 0 for a sufficiently small 𝓎𝓎, which means that entry is 

procompetitive and excessive for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

Theorem 2: Consider monopolistic competition under symmetric H.D.I.A. with gross substitutes. 

Assume D1 to ensure the symmetry of equilibrium and D2 to ensure the uniqueness of the 

symmetric equilibrium.  Then, the unique symmetric equilibrium is given by eq.(26) and eq.(27).  

Assume D3 to ensure that the planner’s problem is well-defined. Then, at the unique symmetric 

equilibrium, entry is, 

• procompetitive and excessive for any 𝐿𝐿 𝐹𝐹⁄ > 0, if  𝑓𝑓𝜙𝜙′(𝓎𝓎) > 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,∞); 

• neutral and optimal for any 𝐿𝐿 𝐹𝐹⁄ > 0, if 𝑓𝑓𝜙𝜙′(𝓎𝓎) = 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,∞), that is, under CES; 

• anticompetitive and insufficient for any 𝐿𝐿 𝐹𝐹⁄ > 0, 𝑚𝑚𝑓𝑓 𝑓𝑓𝜙𝜙′(𝓎𝓎) < 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,∞). 

Furthermore, in the presence of the choke price, 𝜙𝜙′(0) < ∞, entry is procompetitive and 

excessive for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

We now turn to some examples to illustrate Theorem 2. 

Example 4; Perturbed CES, H.D.I.A. with global monotonicity.  Consider a family of 

H.D.I.A. technologies, such that   

𝑓𝑓𝜙𝜙(𝓎𝓎) ≡ −
𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) =

1
𝜎𝜎

+ 𝛿𝛿 �1 −
1
𝜎𝜎
�𝑔𝑔(𝓎𝓎), 

where 𝜎𝜎 > 1, and 𝑔𝑔(𝓎𝓎) satisfies 𝑔𝑔′(𝓎𝓎) > 0  for all 𝓎𝓎 > 0 with 𝑔𝑔(0) = 0 and 𝑔𝑔(∞) = 1 and 

sup{𝓎𝓎𝑔𝑔′(𝓎𝓎)|𝓎𝓎 > 0} ≡ 𝜅𝜅 < ∞.  For example,  
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𝑔𝑔(𝓎𝓎) =
𝓎𝓎

𝜂𝜂 + 𝓎𝓎
, 𝜂𝜂 > 0 ⟹ 𝜅𝜅 =

1
4

< ∞ 

𝑔𝑔(𝓎𝓎) = 1 − 𝑒𝑒−𝜇𝜇𝓎𝓎 , 𝜇𝜇 > 0 ⟹  𝜅𝜅 = 𝑒𝑒−1 < ∞ 

satisfy these conditions.  In addition, we impose the following restrictions on 𝜎𝜎, 𝛿𝛿, and 𝜅𝜅: 

 −
1

(1 + 𝜅𝜅)𝜎𝜎 − 1
< 𝛿𝛿 < 1, 

so that 0 < 𝑓𝑓𝜙𝜙(𝓎𝓎) < 1, D1, D2, and D3 hold.24  Then, Theorem 2 can be applied. In this 

example, entry is procompetitive and excessive for all 𝐿𝐿 𝐹𝐹⁄ > 0 when 0 < 𝛿𝛿 < 1, while it is 

anticompetitive and insufficient for all 𝐿𝐿 𝐹𝐹⁄ > 0 when − 1
(1+𝜅𝜅)𝜎𝜎−1

< 𝛿𝛿 < 0. 

 

Example 5: H.D.I.A. with a choke price.  Consider a family of H.D.I.A. technologies such that   

0 < 𝑓𝑓𝜙𝜙(𝓎𝓎) ≡ −
𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) < 1, 

satisfies 𝑓𝑓𝜙𝜙′ (𝓎𝓎) > 0  for all 𝓎𝓎 > 0 and 

lim
𝓎𝓎→0

�
𝑓𝑓𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝓎𝓎0
′

𝓎𝓎
< ∞ ⟺𝜙𝜙′(0) = lim

𝓎𝓎→0
exp ��

𝑓𝑓𝜙𝜙(𝜉𝜉)
𝜉𝜉 𝑑𝑑𝜉𝜉

𝓎𝓎0
′

𝓎𝓎
� < ∞, 

which implies the choke price.  For example,  

𝑓𝑓𝜙𝜙(𝓎𝓎) =
𝓎𝓎

𝜂𝜂 + 𝓎𝓎
, 𝜂𝜂 > 0; 

𝑓𝑓𝜙𝜙(𝓎𝓎) = 1 − 𝑒𝑒−𝜇𝜇𝓎𝓎 , 𝜇𝜇 > 0, 

satisfy these conditions.  Clearly, D1, D2, and D3 are all satisfied, and from Lemma 5, 𝑓𝑓𝜙𝜙′ (𝓎𝓎) >

0 ⟹ ℰ𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 > 0.  Hence, entry is always procompetitive and excessive, not just 

for a sufficiently large 𝐿𝐿/𝐹𝐹. 

 

 
24It is easy to verify 0 < 𝑓𝑓𝜙𝜙(𝓎𝓎) < 1 and D3.  For D1 and D2, if 𝛿𝛿 ≥ 0, 𝑓𝑓𝜙𝜙′ (𝓎𝓎) ≥ 0, which implies both D1 and D2.  
If 𝛿𝛿 < 0, 𝑓𝑓𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 > 0.  From Lemma 5, this implies ℰ𝜙𝜙′ (𝓎𝓎) > 0 for all 𝓎𝓎 > 0, which means that D2 
implies D1.  To verify that D2 for 𝛿𝛿 < 0, note that 𝑓𝑓𝜙𝜙′ (𝓎𝓎) < 0 and ℰ𝜙𝜙′ (𝓎𝓎) > 0 for all 𝓎𝓎 > 0 implies  

𝑓𝑓𝜙𝜙(𝓎𝓎)ℰ𝜙𝜙(𝓎𝓎) >  𝑓𝑓𝜙𝜙(∞)ℰ𝜙𝜙(0) = �
1
𝜎𝜎

+ 𝛿𝛿 �1 −
1
𝜎𝜎
�� �1 −

1
𝜎𝜎
�, 

while 𝛿𝛿 < 0 and the definition of 𝜅𝜅 implies 

𝓎𝓎𝑓𝑓𝜙𝜙′ (𝓎𝓎) = 𝛿𝛿 �1 −
1
𝜎𝜎
�𝓎𝓎𝑔𝑔′(𝓎𝓎) > 𝛿𝛿 �1 −

1
𝜎𝜎
�𝜅𝜅 

Adding each side of the two inequalities above yields 𝑓𝑓𝜙𝜙(𝓎𝓎)ℰ𝜙𝜙(𝓎𝓎) + 𝓎𝓎𝑓𝑓𝜙𝜙′ (𝓎𝓎) > 0, because − 1
(1+𝜅𝜅)𝜎𝜎−1

< 𝛿𝛿 < 0, 
which is equivalent to D2. 
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The assumption of the global monotonicity of 𝑓𝑓𝜙𝜙(∙) in Theorem 2, which implies the 

global monotonicity of ℰ𝜙𝜙(∙) by Lemma 5, is important.  Otherwise, entry could be 

procompetitive and yet insufficient, or anticompetitive and yet excessive, as the next example 

illustrates. 

Example 6.  Perturbed CES, H.D.I.A. without global monotonicity.   Consider a family of 

H.D.I.A technologies with 

ℰ𝜙𝜙(𝓎𝓎) ≡
𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) = 1 −

1
𝜎𝜎

+ 𝛿𝛿𝑔𝑔(𝓎𝓎), 

𝑓𝑓𝜙𝜙(𝓎𝓎) ≡ −
𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) = 1 − ℰ𝜙𝜙(𝓎𝓎) −

𝓎𝓎ℰ𝜙𝜙′ (𝓎𝓎)
ℰ𝜙𝜙(𝓎𝓎) =

1
𝜎𝜎

+ 𝛿𝛿𝑔𝑔(𝓎𝓎) −
𝛿𝛿𝓎𝓎𝑔𝑔′(𝓎𝓎)

1 − 1
𝜎𝜎 + 𝛿𝛿𝑔𝑔(𝓎𝓎)

. 

where 𝜎𝜎 > 1, 𝛿𝛿 can be either positive or negative (but sufficiently small in absolute value to ensure 

D1, D2 and D3), while 𝑔𝑔(𝓎𝓎) is twice continuously differentiable, single-peaked, and satisfies 

𝑔𝑔(0) = 𝑔𝑔(∞) = 0, sup |𝑔𝑔′(𝓎𝓎)| < ∞.  Let 𝓎𝓎� > 0 be the maximizer of 𝑔𝑔(𝓎𝓎). Hence, 𝑔𝑔′(𝓎𝓎�) =

0 > 𝑔𝑔′′(𝓎𝓎�).  For example, 

𝑔𝑔(𝓎𝓎) =
𝓎𝓎

𝜆𝜆 + 𝓎𝓎2 , 𝜆𝜆 > 0 ⟹𝓎𝓎� = �𝜆𝜆; 

𝑔𝑔(𝓎𝓎) = 𝓎𝓎𝑒𝑒−𝜇𝜇𝓎𝓎 , 𝜇𝜇 > 0 ⟹𝓎𝓎� = 1 𝜇𝜇⁄ . 

From Proposition 6, entry is excessive if and only if ℰ𝜙𝜙′ (𝓎𝓎𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝓎𝓎𝐸𝐸) < 0, while it is 

insufficient if and only if  ℰ𝜙𝜙′ (𝓎𝓎𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝓎𝓎𝐸𝐸) > 0.   Evaluating 𝑓𝑓𝜙𝜙′ (𝓎𝓎) at 𝓎𝓎 = 𝓎𝓎�  yields: 

𝑓𝑓𝜙𝜙′ (𝓎𝓎�) = −
𝓎𝓎�ℰ𝜙𝜙′′(𝓎𝓎�)
ℰ𝜙𝜙(𝓎𝓎�) = −𝛿𝛿𝑔𝑔′′(𝓎𝓎�)

𝓎𝓎�
ℰ𝜙𝜙(𝓎𝓎�) ⋛ 0 ⟺ 𝛿𝛿 ⋛ 0, 

Thus, from Proposition 5, entry is procompetitive in the vicinity of 𝓎𝓎� , if 𝛿𝛿 > 0, while it is 

anticompetitive in the vicinity of 𝓎𝓎� , if 𝛿𝛿 < 0. 

Combining these two observations, we conclude that entry is procompetitive and yet 

insufficient for 𝛿𝛿 > 0 and 𝓎𝓎𝐸𝐸 slightly higher than 𝓎𝓎� , or equivalently, 𝐹𝐹 𝐿𝐿⁄   slightly higher than 

𝜙𝜙(𝓎𝓎�)𝑓𝑓𝜙𝜙(𝓎𝓎�), while it is anticompetitive and yet excessive for 𝛿𝛿 < 0 and 𝓎𝓎𝐸𝐸 slightly lower than 𝓎𝓎� , 

or equivalently 𝐹𝐹 𝐿𝐿⁄  slightly lower than 𝜙𝜙(𝓎𝓎�)𝑓𝑓𝜙𝜙(𝓎𝓎�).  
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5.   Dixit-Stiglitz under H.I.I.A. (Homothetic Indirect Implicit Additivity) 

5.1.H.I.I.A. Demand System  

We call a symmetric CRS technology, 𝑋𝑋 = 𝑋𝑋(𝐱𝐱) or 𝑃𝑃 = 𝑃𝑃(𝐩𝐩), homothetic with indirect 

implicit additivity (H.I.I.A.)25 if 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) can be defined implicitly by: 

 
� 𝜃𝜃 �

𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)�𝑑𝑑𝜔𝜔Ω

= 1, 

 

(28) 

where 𝜃𝜃(⋅):ℝ+ → ℝ+ is thrice continuously differentiable, strictly decreasing, and strictly 

convex, as long as 𝜃𝜃(𝓏𝓏) > 0 with  lim𝓏𝓏→0 𝜃𝜃(𝓏𝓏) = ∞ and  lim𝓏𝓏→�̅�𝓏 𝜃𝜃(𝓏𝓏) = 0, where �̅�𝓏 ≡

inf{𝓏𝓏 > 0|𝜃𝜃(𝓏𝓏) = 0}. Again, we allow for the possibility of �̅�𝓏 < ∞, the existence of the choke 

price, in which case, lim
𝓏𝓏→𝓏𝓏

𝜃𝜃′(𝓏𝓏) = 0.  If �̅�𝓏 = ∞, the choke price does not exist and demand for 

each input always remains positive for any positive price vector. 

In the following analysis, both the elasticity of 𝜃𝜃(⋅) in its absolute value, 

 
ℰ𝜃𝜃(𝓏𝓏) ≡ −

𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) > 0, 

 

(29) 

and the elasticity of 𝜃𝜃′(∙) in its absolute value, 

 
𝑓𝑓𝜃𝜃(𝓏𝓏) ≡ −

𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) > 1 

 

(30) 

both defined over (0,𝓏𝓏), play important roles. That 𝜃𝜃(𝓏𝓏) is strictly decreasing and strictly 

positive in (0,𝓏𝓏) ensures  ℰ𝜃𝜃(𝓏𝓏) > 0, and that 𝜃𝜃(𝓏𝓏) is strictly decreasing and strictly convex in 

(0,𝓏𝓏) ensures 𝑓𝑓𝜃𝜃(𝓏𝓏) > 0. However, the convexity of 𝜃𝜃(𝓏𝓏) does not impose any upper bound on 

ℰ𝜃𝜃(𝓏𝓏).  In addition, it is necessary to assume 𝑓𝑓𝜃𝜃(𝓏𝓏) > 1 to ensure that inputs are gross 

substitutes, as will be seen below.  Note that ℰ𝜃𝜃(𝓏𝓏) > 0 is twice continuously differentiable in 

(0,𝓏𝓏) and satisfies lim
𝓏𝓏→𝓏𝓏

ℰ𝜃𝜃(𝓏𝓏) = ∞  if 𝓏𝓏 < ∞, and that 𝑓𝑓𝜃𝜃(𝓏𝓏) > 1 is continuously differentiable in 

 
25More generally, 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) is H.I.I.A. if it can be defined implicitly by ∫ 𝜃𝜃𝜔𝜔(𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄ )𝑑𝑑𝜔𝜔Ω = 1.  It is the 
homothetic restriction of the class of I.I.A. (indirect implicit additivity), which can be defined implicitly by 
∫ 𝜃𝜃�𝜔𝜔�𝑝𝑝𝜔𝜔,𝑃𝑃(𝐩𝐩)�𝑑𝑑𝜔𝜔Ω = 1: see Hanoch (1975; Section 3). In contrast, 𝑃𝑃 = 𝑃𝑃(𝐩𝐩) is I.E.A. (indirect explicit additivity) 

if it can be defined as 𝑃𝑃(𝐩𝐩) = ℳ�∫ �̅�𝜃𝜔𝜔(𝑝𝑝𝜔𝜔)𝑑𝑑𝜔𝜔Ω �, where ℳ(∙) is a monotone transformation: see Hanoch (1975; 
Section 3.2). I.E.A. is another subclass of I.I.A., with 𝜃𝜃�𝜔𝜔�𝑝𝑝𝜔𝜔,𝑃𝑃(𝐩𝐩)� = �̅�𝜃𝜔𝜔(𝑝𝑝𝜔𝜔) ℳ−1(𝑃𝑃(𝐩𝐩))⁄ . Although I.E.A. and 
H.I.I.A. are both subclasses of I.I.A., CES is the only common element of I.E.A. and H.I.I.A. because I.E.A. cannot 
be homothetic unless it is CES. 
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(0,𝓏𝓏) and satisfies lim
𝓏𝓏→𝓏𝓏

𝑓𝑓𝜃𝜃(𝓏𝓏) = ∞  if 𝓏𝓏 < ∞. Conversely, either from any twice continuously 

differentiable ℰ𝜃𝜃(𝓏𝓏) > 0, defined over (0,𝓏𝓏), satisfying lim
𝓏𝓏→𝓏𝓏

ℰ𝜃𝜃(𝓏𝓏) = ∞  if 𝓏𝓏 < ∞  or from any 

continuously differentiable 𝑓𝑓𝜃𝜃(𝓏𝓏) > 1, defined over (0,𝓏𝓏),  satisfying lim
𝓏𝓏→𝓏𝓏

𝑓𝑓𝜃𝜃(𝓏𝓏) = ∞ if 𝓏𝓏 < ∞, 

one could recover 𝜃𝜃(𝓏𝓏) as follows: 

𝜃𝜃(𝓏𝓏) = exp �−� ℰ𝜃𝜃(𝜉𝜉)
𝑑𝑑𝜉𝜉
𝜉𝜉

𝓏𝓏

𝓏𝓏0
� ; 

𝜃𝜃(𝓏𝓏) = � exp �−� 𝑓𝑓𝜃𝜃(𝜉𝜉′)
𝑑𝑑𝜉𝜉′

𝜉𝜉′
𝜉𝜉

𝓏𝓏0′
� 𝑑𝑑𝜉𝜉.

∞

𝓏𝓏
 

where 𝓏𝓏0 > 0 and 𝓏𝓏0′ > 0 are both constants.26  One could also verify from eq.(29) and eq.(30) 

that ℰ𝜃𝜃(𝓏𝓏) and 𝑓𝑓𝜃𝜃(𝓏𝓏) are related as follows: 

𝓏𝓏ℰ𝜃𝜃′(𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑓𝑓𝜃𝜃(𝓏𝓏). 

Clearly, CES with gross substitutes is a special case with 𝜃𝜃(𝓏𝓏) = 𝐴𝐴𝓏𝓏1−𝜎𝜎 and ℰ𝜃𝜃(𝓏𝓏) + 1 =

𝑓𝑓𝜃𝜃(𝓏𝓏) = 𝜎𝜎 > 1. 

The cost minimization problem, eq.(2) subject to eq. (28) implies that the demand curve 

for each 𝜔𝜔 ∈ Ω can be written as: 

 𝑥𝑥𝜔𝜔 = −𝐵𝐵∗(𝐱𝐱)𝜃𝜃′ �
𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)� > 0,  (31) 

where 𝐵𝐵∗(𝐱𝐱) > 0 is the Lagrange multiplier associated with eq.(28), and it is the linear 

homogenous function in 𝐱𝐱, given by 

� 𝜃𝜃 �(−𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)��𝑑𝑑𝜔𝜔Ω
≡ 1. 

From eq.(31), the production function is given by:  

 
𝑋𝑋 = 𝑋𝑋(𝐱𝐱) = � (−𝜃𝜃′)−1 �

𝑥𝑥𝜔𝜔
𝐵𝐵∗(𝐱𝐱)

� 𝑥𝑥𝜔𝜔𝑑𝑑𝜔𝜔
Ω

. 
(32) 

Furthermore, the market share of 𝜔𝜔 can be written as:  
𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)

𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)

= −𝜃𝜃′ �
𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)

�
𝑝𝑝𝜔𝜔
𝐶𝐶(𝐩𝐩)

= (−𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)
�
𝑥𝑥𝜔𝜔
𝑋𝑋(𝐱𝐱)

, 

 
26 These constants imply that 𝜃𝜃(𝓏𝓏)is determined up to a positive scalar multiplier.  However, 𝛾𝛾𝜃𝜃(𝓏𝓏) with 𝛾𝛾 > 0 
generate the same CRS technology. All we need is to renormalize the indices of varieties, as ∫  𝛾𝛾𝜙𝜙𝜃𝜃(𝑝𝑝𝜔𝜔 𝑃𝑃⁄ )𝑑𝑑𝜔𝜔Ω =

∫  𝛾𝛾𝜃𝜃(𝑝𝑝𝜔𝜔′ 𝑃𝑃⁄ )𝑑𝑑𝜔𝜔′
Ω = 1, with 𝜔𝜔′ = 𝛾𝛾𝜔𝜔. 
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where 𝐶𝐶(𝐩𝐩) ≡ −∫ 𝜃𝜃′ � 𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)� 𝑝𝑝𝜔𝜔𝑑𝑑𝜔𝜔Ω > 0 is a linear homogenous function of 𝐩𝐩, and satisfies the 

identity, 𝐶𝐶(𝐩𝐩)𝐵𝐵∗(𝐱𝐱) = 𝐿𝐿 = 𝑃𝑃(𝐩𝐩)𝑋𝑋(𝐱𝐱), because 

𝐶𝐶(𝐩𝐩)
𝑃𝑃(𝐩𝐩) = −� 𝜃𝜃′ �

𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)�

𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)𝑑𝑑𝜔𝜔Ω

= � (−𝜃𝜃′)−1 �
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)�
𝑥𝑥𝜔𝜔

𝐵𝐵∗(𝐱𝐱)𝑑𝑑𝜔𝜔Ω
=
𝑋𝑋(𝐱𝐱)
𝐵𝐵∗(𝐱𝐱). 

The above expressions for the market share under H.I.I.A. show that it is either a function of the 

two relative prices,  𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄  and  𝑝𝑝𝜔𝜔 𝐶𝐶(𝐩𝐩)⁄ , or a function of the two relative quantities, 

𝑥𝑥𝜔𝜔 𝑋𝑋(𝐱𝐱)⁄  and 𝑥𝑥𝜔𝜔 𝐵𝐵∗(𝐱𝐱)⁄ , unless 𝐶𝐶(𝐩𝐩) 𝑃𝑃(𝐩𝐩)⁄ = 𝑋𝑋(𝐱𝐱) 𝐵𝐵∗(𝐱𝐱)⁄  is a positive constant, 𝑐𝑐 > 0, which 

occurs if and only if it is CES. Thus, H.I.I.A. and H.S.A. do not overlap with the sole exception 

of CES.27 Furthermore, by comparing the expressions for the market share under H.D.I.A. and 

the market share under H.I.I.A. one could see that H.D.I.A. and H.I.I.A. do not overlap with the 

sole exception of CES.28 

From the demand curve, eq.(31), the elasticity of substitution between a pair of inputs, 𝜔𝜔1 

and 𝜔𝜔2, evaluated at the same price (and hence at the same quantity) can be expressed as:  

−
𝜕𝜕 ln�𝑥𝑥𝜔𝜔1 𝑥𝑥𝜔𝜔2⁄ �
𝜕𝜕 ln�𝑝𝑝𝜔𝜔1 𝑝𝑝𝜔𝜔2⁄ �

�
𝑝𝑝𝜔𝜔1=𝑝𝑝𝜔𝜔2=𝑝𝑝

 =    𝑓𝑓𝜃𝜃 �
𝑝𝑝
𝑃𝑃
� > 1, 

hence 𝑓𝑓𝜃𝜃(𝓏𝓏) > 1 to ensure that inputs are gross substitutes. 

 

5.2.Profit Maximization by Input Producing Firms under H.I.I.A. 

From the demand curve, eq.(31), the profit of firm 𝜔𝜔 ∈ Ω is given by: 

 𝜋𝜋𝜔𝜔 = −(𝑝𝑝𝜔𝜔 − 𝜓𝜓)𝐵𝐵∗(𝐱𝐱)𝜃𝜃′ �
𝑝𝑝𝜔𝜔
𝑃𝑃(𝐩𝐩)� − 𝐹𝐹.  

Firm 𝜔𝜔  chooses its price, 𝑝𝑝𝜔𝜔, to maximize its profit 𝜋𝜋𝜔𝜔, taking the aggregate variables, 𝑃𝑃 =

𝑃𝑃(𝐩𝐩) and 𝐵𝐵∗(𝐱𝐱) as given. Or equivalently, it chooses 𝓏𝓏𝜔𝜔 ≡ 𝑝𝑝𝜔𝜔 𝑃𝑃(𝐩𝐩)⁄  to minimize 

�𝓏𝓏𝜔𝜔 −
𝜓𝜓

𝑃𝑃(𝐩𝐩)� 𝜃𝜃
′(𝓏𝓏𝜔𝜔). 

The FOC is: 

 𝜃𝜃′(𝓏𝓏𝜔𝜔) + �𝓏𝓏𝜔𝜔 −
𝜓𝜓

𝑃𝑃(𝐩𝐩)�𝜃𝜃
′′(𝓏𝓏𝜔𝜔) = 𝓏𝓏𝜔𝜔𝜃𝜃′′(𝓏𝓏𝜔𝜔) �1 −

𝜓𝜓
𝑝𝑝𝜔𝜔

−
1

𝑓𝑓𝜃𝜃(𝓏𝓏𝜔𝜔)� = 0. 

 

(33) 

 
27This statement is a special case of Proposition 3-(ii) in Matsuyama and Ushchev (2017).    
28This statement is a special case of Proposition 4-(iii) in Matsuyama and Ushchev (2017). 
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In what follows, we keep it simple by imposing the following assumption to ensure that 
FOC is sufficient for the global optimum. 

Assumption I1: For all 𝓏𝓏 ∈ (0, �̅�𝓏), 

 𝜃𝜃′′′(𝓏𝓏)
𝜃𝜃′′(𝓏𝓏) − 2

𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) > 0 ⟺  

𝓏𝓏𝑓𝑓𝜃𝜃′(𝓏𝓏)
𝑓𝑓𝜃𝜃(𝓏𝓏) + 𝑓𝑓𝜃𝜃(𝓏𝓏)− 1 > 0. 

 

 

I1 is equivalent to the strict concavity of 1 𝜃𝜃′(∙)⁄ .  It is readily verified that the LHS of the FOC, 

eq.(33) increases in the neighborhood of every solution to eq.(33) if and only if I1 holds.  Hence, 

eq.(33) gives the unique profit-maximizing price for each firm.  Thus, all the firms set the same 

price, 𝑝𝑝(𝜔𝜔) = 𝑝𝑝, and produce the same amount, 𝑥𝑥(𝜔𝜔) = 𝑥𝑥.   Hence, under I1, asymmetric 

equilibria do not exist.  Unlike in the case of H.S.A., but as in the case of H.D.I.A., the condition 

that rules out asymmetric equilibria does not ensure the uniqueness of a symmetric equilibrium 

under H.I.I.A., which needs to be introduced separately; see I2 below.    

 

5.3. Symmetric Free-Entry Equilibrium under H.I.I.A. 

A symmetric free-entry equilibrium under H.I.I.A. satisfies the following conditions: 

H.I.I.A. integral condition, eq.(28) under symmetry: 
 𝑉𝑉𝜃𝜃 �

𝑝𝑝
𝑃𝑃
� = 1; 
 

(34) 

Firm’s pricing formula, given by FOC eq.(33) under symmetry: 
 1 −

𝜓𝜓
𝑝𝑝

=
1

𝑓𝑓𝜃𝜃 �
𝑝𝑝
𝑃𝑃�

, (35) 

in addition to the zero-profit (free-entry) condition, (9) and the resource constraint, (10). 

For the uniqueness of a symmetric equilibrium, we introduce the following condition: 

Assumption I2: For all 𝓏𝓏 ∈ (0, �̅�𝓏), 

 𝓏𝓏𝜃𝜃′′′(𝓏𝓏)
𝜃𝜃′′(𝓏𝓏)

+ 1 + 𝑓𝑓𝜃𝜃(𝓏𝓏) + ℰ𝜃𝜃(𝓏𝓏) > 0 ⟺  
𝓏𝓏𝑓𝑓𝜃𝜃′(𝓏𝓏)
𝑓𝑓𝜃𝜃(𝓏𝓏) + ℰ𝜃𝜃(𝓏𝓏) > 0. 

 

 

Clearly, I1 implies I2 if  

𝓏𝓏ℰ𝜃𝜃′(𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑓𝑓𝜃𝜃(𝓏𝓏) > 0, 

and I2 implies I1, if  
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𝓏𝓏ℰ𝜃𝜃′(𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑓𝑓𝜃𝜃(𝓏𝓏) < 0, 

and I2 and I1 are equivalent if and only if  

𝓏𝓏ℰ𝜃𝜃′(𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑓𝑓𝜃𝜃(𝓏𝓏) = 0, 

that is, under and only under CES. 

To see why I2 ensures the existence and the uniqueness of a symmetric free-entry 

equilibrium under H.I.I.A., note first that the pricing formula, eq.(35), and the free entry 

condition eq.(9) can be combined to yield: 

 𝑝𝑝𝑥𝑥 = 𝑓𝑓𝜃𝜃(𝑝𝑝 𝑃𝑃⁄ )𝐹𝐹. (36) 

From eq.(9) and eq.(10), 𝑝𝑝𝑉𝑉𝑥𝑥 = 𝐿𝐿, which can be combined with eq.(36) to obtain: 
𝐿𝐿
𝑉𝑉

= 𝑝𝑝𝑥𝑥 = 𝑓𝑓𝜃𝜃(𝑝𝑝 𝑃𝑃⁄ )𝐹𝐹, 

which becomes after using the H.I.I.A. condition, eq.(34): 

 𝜃𝜃(𝑝𝑝 𝑃𝑃⁄ )
 𝑓𝑓𝜃𝜃(𝑝𝑝 𝑃𝑃⁄ )

=
𝐹𝐹
𝐿𝐿

. 

The LHS of this equation is decreasing in 𝑝𝑝 𝑃𝑃⁄ , because I2 implies   

𝑑𝑑 ln  [𝜃𝜃(𝓏𝓏) 𝑓𝑓𝜃𝜃(𝓏𝓏)⁄ ]
𝑑𝑑 ln𝓏𝓏

=
𝓏𝓏𝜃𝜃′′′(𝓏𝓏)
𝜃𝜃′′(𝓏𝓏)

+ 1 + 𝑓𝑓𝜃𝜃(𝓏𝓏) + ℰ𝜃𝜃(𝓏𝓏) > 0 for all 𝓏𝓏 ∈ (0, �̅�𝓏) 

Furthermore, lim𝓏𝓏→0 𝜃𝜃(𝓏𝓏) 𝑓𝑓𝜃𝜃(𝓏𝓏)⁄ = ∞ and lim𝓏𝓏→�̅�𝓏 𝜃𝜃(𝓏𝓏) 𝑓𝑓𝜃𝜃(𝓏𝓏)⁄ = 0. Hence, for each 𝐿𝐿 𝐹𝐹⁄ > 0,  

the equilibrium value of 𝓏𝓏, 𝓏𝓏𝐸𝐸, is pinned down uniquely by 

  𝜃𝜃(𝓏𝓏𝐸𝐸)
 𝑓𝑓𝜃𝜃(𝓏𝓏𝐸𝐸)

=
𝐹𝐹
𝐿𝐿

 
(37) 

and 𝓏𝓏𝐸𝐸 is increasing in 𝐿𝐿 𝐹𝐹⁄  with the range (0, �̅�𝓏).  By inserting this value into eq.(34), eq.(35), 

and eq.(9),  

 𝑉𝑉𝐸𝐸 =
1

𝜃𝜃(𝓏𝓏𝐸𝐸) ;  

 
𝑃𝑃𝐸𝐸 =

𝑝𝑝𝐸𝐸

𝓏𝓏𝐸𝐸
=

𝜓𝜓 𝓏𝓏𝐸𝐸⁄
1 − 1 𝑓𝑓𝜃𝜃(𝓏𝓏𝐸𝐸)⁄ > 0; 

(38) 

 
𝑥𝑥𝐸𝐸 =

(𝑓𝑓𝜃𝜃(𝓏𝓏𝐸𝐸) − 1)𝐹𝐹
𝜓𝜓

=
𝜃𝜃(𝓏𝓏𝐸𝐸)𝐿𝐿 − 𝐹𝐹

𝜓𝜓
> 0. 

 

Thus, we have shown: 
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Proposition 7. Under I1, no asymmetric equilibria exist. Furthermore, under I1 and I2, there 

exists a unique symmetric free-entry equilibrium under H.I.I.A. for each 𝐿𝐿 𝐹𝐹⁄ > 0, given by 

eq.(37) and eq.(38). 

 

5.4.Comparative Statics under H.I.I.A.: Procompetitive versus Anticompetitive 

Let us now turn to the comparative statics to study the market size effect. 

Proposition 8.  Assume I1 and I2.  At the unique symmetric equilibrium in monopolistic 

competition under H.I.I.A., given by eq.(37) and eq.(38),  

Procompetitive: 
𝑓𝑓𝜃𝜃′(𝓏𝓏𝐸𝐸) > 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝐿𝐿
< 0;  0 <

𝜕𝜕 ln𝑉𝑉𝐸𝐸

𝜕𝜕 ln 𝐿𝐿
< 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝐿𝐿
> 0 

 

Neutral (CES): 
𝑓𝑓𝜃𝜃′(𝓏𝓏𝐸𝐸) = 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝐿𝐿
= 0; 

𝜕𝜕 ln𝑉𝑉𝐸𝐸

𝜕𝜕 ln 𝐿𝐿
= 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝐿𝐿
= 0 

 

Anticompetitive: 
𝑓𝑓𝜃𝜃′(𝓏𝓏𝐸𝐸) < 0 ⟹  

𝜕𝜕𝑝𝑝𝐸𝐸

𝜕𝜕𝐿𝐿
> 0; 

𝜕𝜕 ln𝑉𝑉𝐸𝐸

𝜕𝜕 ln 𝐿𝐿
> 1; 

𝜕𝜕𝑥𝑥𝐸𝐸

𝜕𝜕𝐿𝐿
< 0. 

 

Proof:  Since eq.(37) implies 𝜕𝜕𝓏𝓏𝐸𝐸 𝜕𝜕𝐿𝐿⁄ > 0 under I2, this follows from eq.(38).∎ 

The conditions for the procompetitive vs. anticompetitive cases under H.I.I.A. are analogous to 

those under H.S.A and H.D.I.A.  For example, the condition for the procompetitive case is 

𝜁𝜁′(𝑧𝑧𝐸𝐸) = 𝜁𝜁′(𝑝𝑝𝐸𝐸 𝐴𝐴𝐸𝐸⁄ ) > 0 under H.S.A., while it is 𝑓𝑓𝜃𝜃′(𝓏𝓏𝐸𝐸) = 𝜁𝜁′(𝑝𝑝𝐸𝐸 𝑃𝑃𝐸𝐸⁄ ) > 0 under H.I.I.A. That 

is, the price elasticity of demand for an input goes up as its price goes up, holding the aggregates 

fixed.  This is nothing but Marshall’s 2nd law of demand. Note also that, if the condition for the 

procompetitive case holds globally, 𝑓𝑓𝜃𝜃′(∙) > 0, I1 and I2 hold automatically. However, neither I1 

nor I2 necessarily implies 𝑓𝑓𝜃𝜃′(∙) > 0.  This means that I1 and I2 do not rule out the 

anticompetitive case, 𝑓𝑓𝜃𝜃′(∙) < 0. 

 

5.5.Welfare Analysis under H.I.I.A.: Excessive versus Insufficient 

We now turn to the welfare analysis under H.I.I.A.. The social planner maximizes the output, 

given by eq.(32), subject to the resource constraint, 

𝑉𝑉𝐹𝐹 + 𝜓𝜓� 𝑥𝑥𝜔𝜔𝑑𝑑𝜔𝜔
Ω

= 𝐿𝐿. 

Because of the symmetry and the convexity of this problem, the solution has to be symmetric, 

𝑥𝑥𝜔𝜔 = 𝑥𝑥.  By denoting   
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𝓏𝓏 = (−𝜃𝜃′)−1 �
𝑥𝑥

𝐵𝐵(𝐱𝐱)�, 

the problem is hence reduced to maximize 𝑋𝑋 = 𝑉𝑉𝑥𝑥𝓏𝓏 subject to 𝑉𝑉𝜃𝜃(𝓏𝓏) = 1 and (𝐹𝐹 + 𝜓𝜓𝑥𝑥)𝑉𝑉 = 𝐿𝐿, 

or equivalently, 

max
𝓏𝓏

𝑋𝑋 = max
0≤𝓏𝓏≤�̂�𝓏

𝑊𝑊(𝓏𝓏) ≡ 𝓏𝓏 �1 −
𝐹𝐹 𝐿𝐿⁄
𝜃𝜃(𝓏𝓏)�, 

where �̂�𝓏 ≡ 𝜃𝜃−1(𝐹𝐹 𝐿𝐿⁄ ) ∈ (0,𝓏𝓏).  Clearly, 𝑊𝑊(0) = 𝑊𝑊(�̂�𝓏) = 0, and 𝑊𝑊(𝓏𝓏) > 0 when 0 < 𝓏𝓏 < �̂�𝓏. 

 

Lemma 6. Assume I2. Then, 𝑊𝑊(𝓏𝓏) is unimodal, with 

𝑊𝑊′(𝓏𝓏) ⋛ 0 ⟺
𝐿𝐿
𝐹𝐹
⋛

1 + ℰ𝜃𝜃(𝓏𝓏)
 𝜃𝜃(𝓏𝓏) ⟺ 𝓏𝓏 ⋚ 𝓏𝓏𝑂𝑂 

where 𝓏𝓏𝑂𝑂 ∈ (0, �̂�𝓏) is the socially optimal value of 𝓏𝓏, uniquely given by 

𝐿𝐿
𝐹𝐹

=
1 + ℰ𝜃𝜃(𝓏𝓏𝑂𝑂)

 𝜃𝜃(𝓏𝓏𝑂𝑂)  

and 𝓏𝓏𝑂𝑂 is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ . 

Proof.  Differentiating 𝑊𝑊(𝓏𝓏) yields  

 
 𝑊𝑊′(𝓏𝓏) = 1 −

𝐹𝐹
𝐿𝐿

1 + ℰ𝜃𝜃(𝓏𝓏)
 𝜃𝜃(𝓏𝓏) . 

 

𝑊𝑊′′(𝓏𝓏) =
ℰ𝜃𝜃(𝓏𝓏)

 𝓏𝓏
�
𝑓𝑓𝜃𝜃(𝓏𝓏)
𝜃𝜃(𝓏𝓏)

𝐹𝐹
𝐿𝐿
− 2�1 −  𝑊𝑊′(𝓏𝓏)��. 

To show that 𝑊𝑊(𝓏𝓏) is unimodal with the unique global optimizer, 𝓏𝓏𝑂𝑂 ∈ (0, �̂�𝓏) satisfying 

𝑊𝑊′(𝓏𝓏𝑂𝑂) = 0,  suppose the contrary. Then, there exist 0 < 𝓏𝓏1 < 𝓏𝓏2 <  𝓏𝓏3 < �̂�𝓏, such that 𝓏𝓏1 and 

𝓏𝓏3 are local maxima satisfying  𝑊𝑊′(𝓏𝓏1) = 0 > 𝑊𝑊′′(𝓏𝓏1) and 𝑊𝑊′(𝓏𝓏3) = 0 > 𝑊𝑊′′(𝓏𝓏3) and 𝓏𝓏2 is a 

local minimum satisfying 𝑊𝑊′(𝓏𝓏2) = 0 < 𝑊𝑊′′(𝓏𝓏2).  This implies  

𝑓𝑓𝜃𝜃(𝓏𝓏)
𝜃𝜃(𝓏𝓏)

𝐹𝐹
𝐿𝐿
− 2�1 −  𝑊𝑊′(𝓏𝓏)� =

𝑓𝑓𝜃𝜃(𝓏𝓏)
𝜃𝜃(𝓏𝓏)

𝐹𝐹
𝐿𝐿
− 2 

is negative at 𝓏𝓏1 and 𝓏𝓏3 and positive at 𝓏𝓏2, contradicting the monotonicity of  𝑓𝑓𝜃𝜃(𝓏𝓏) 𝜃𝜃(𝓏𝓏)⁄ , hence 

I2.  That 𝓏𝓏𝑂𝑂 is strictly increasing in 𝐿𝐿 𝐹𝐹⁄  follows from 𝑊𝑊′′(𝓏𝓏𝑂𝑂) < 0 and 𝜕𝜕𝑊𝑊′(𝓏𝓏𝑂𝑂) 𝜕𝜕(𝐿𝐿 𝐹𝐹⁄⁄ ) >

0.∎ 

 

Proposition 9. Assume I1 and I2.  Then, at the unique symmetric equilibrium in monopolistic 

competition under H.I.I.A., given by eq.(37) and eq.(38), 𝑉𝑉𝐸𝐸 , the equilibrium mass of firms that 
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enter = the equilibrium mass of varieties produced and 𝑉𝑉𝑂𝑂 , the mass of the optimal mass of firms 

that enter = the optimal mass of varieties produced,, satisfy 

Excessive Entry: 𝓏𝓏𝐸𝐸ℰ𝜃𝜃′(𝓏𝓏𝐸𝐸)
ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) = 1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) − 𝑓𝑓𝜃𝜃(𝓏𝓏𝐸𝐸) > 0 ⟺  𝑉𝑉𝐸𝐸 >  𝑉𝑉𝑂𝑂 

Optimal Entry (CES): 𝓏𝓏𝐸𝐸ℰ𝜃𝜃′(𝓏𝓏𝐸𝐸)
ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) = 1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) − 𝑓𝑓𝜃𝜃(𝓏𝓏𝐸𝐸) = 0 ⟺  𝑉𝑉𝐸𝐸 =  𝑉𝑉𝑂𝑂 

Insufficient Entry: 𝓏𝓏𝐸𝐸ℰ𝜃𝜃′(𝓏𝓏𝐸𝐸)
ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) = 1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) − 𝑓𝑓𝜃𝜃(𝓏𝓏𝐸𝐸) < 0 ⟺  𝑉𝑉𝐸𝐸 <  𝑉𝑉𝑂𝑂 

 

Proof.  Since eq.(37) implies 

𝑊𝑊′(𝓏𝓏𝐸𝐸) = 1 −
𝐹𝐹
𝐿𝐿

1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸)
 𝜃𝜃(𝓏𝓏𝐸𝐸) = 1 −

1 + ℰ𝜃𝜃(𝓏𝓏𝐸𝐸)
𝑓𝑓𝜃𝜃(𝓏𝓏𝐸𝐸) 

, 

and Lemma 6 implies 𝑊𝑊′(𝓏𝓏𝐸𝐸) ⋛ 0 ⟺ 𝓏𝓏𝐸𝐸 ⋚ 𝓏𝓏𝑂𝑂 ⟺ 𝑉𝑉𝐸𝐸 ⋚ 𝑉𝑉𝑂𝑂, we have 

𝑓𝑓𝜃𝜃(𝓏𝓏𝐸𝐸) − 1 − ℰ𝜃𝜃(𝓏𝓏𝐸𝐸) ⋛ 0 ⟺ 𝑉𝑉𝐸𝐸 ⋚ 𝑉𝑉𝑂𝑂 . 

This completes the proof. ∎ 

 

Note that, in order for the equilibrium entry to be optimal for a range of the parameter values 

under H.I.I.A, 𝓏𝓏ℰ𝜃𝜃
′ (𝓏𝓏)

ℰ𝜃𝜃(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑓𝑓𝜃𝜃(𝓏𝓏) = 0 must hold for the relevant range of 𝓏𝓏, that is, 

under and only under CES. Thus, CES offers the borderline case between the cases of excessive 

entry and insufficient entry within H.I.I.A. 

 

5.6.Main H.I.I.A. Theorem and Some Examples 

Proposition 8 states that the sign of 𝑓𝑓𝜃𝜃′(𝓏𝓏𝐸𝐸) determines whether entry is procompetitive or 

anticompetitive, while Proposition 9 states the sign of ℰ𝜃𝜃′ (𝓏𝓏𝐸𝐸) determines whether entry is 

excessive or insufficient. Hence, one might think, unlike under H.S.A, that these conditions are 

unrelated to each other, and that both procompetitive entry and anticompetitive entry can be 

either excessive or insufficient under H.I.I.A.. However, similar to the case of H.D.I.A., the next 

lemma shows that there exists a tight connection between the two conditions. 

 

Lemma 7: Assume that 𝑓𝑓𝜃𝜃′(⋅) does not change sign over (𝓏𝓏0,𝓏𝓏), where 0 < 𝓏𝓏0 <  𝓏𝓏. Then, for 

all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏), 
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𝑓𝑓𝜃𝜃′(⋅) ⋛ 0 ⟹  ℰ𝜃𝜃′ (⋅) ⋛ 0. 

Proof: See Appendix B. ∎ 

 

Here is the implication of Lemma 7. Suppose that, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is procompetitive 

at the unique symmetric equilibrium given by eq.(37) and eq.(38). That means that 𝑓𝑓𝜃𝜃′(𝓏𝓏) > 0 for 

all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏), where 𝓏𝓏0 satisfies (𝜃𝜃( 𝓏𝓏0) 𝑓𝑓𝜃𝜃( 𝓏𝓏0)⁄ )(𝐿𝐿 𝐹𝐹⁄ )0 = 1. Then, Lemma 7 tells us 

ℰ𝜃𝜃′ (𝓏𝓏) > 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). Hence, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is excessive at the unique 

symmetric equilibrium.  Likewise, suppose that, for all 𝐿𝐿 𝐹𝐹⁄ > (𝐿𝐿 𝐹𝐹⁄ )0, entry is anticompetitive 

at the unique symmetric equilibrium given by eq.(37) and eq.(38). That means 𝑓𝑓𝜃𝜃′(𝓏𝓏) < 0 for all 

𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏).  Then, Lemma 7 tells us ℰ𝜃𝜃′ (𝓏𝓏) < 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). Hence, for all 𝐿𝐿 𝐹𝐹⁄ >

(𝐿𝐿 𝐹𝐹⁄ )0, entry is insufficient at the unique symmetric equilibrium. 

We are now ready to summarize the main properties of H.I.I.A. in the next theorem, by 

consolidating Propositions 7, 8, and 9 and Lemma 7. In doing so, we take into account that 𝓏𝓏𝐸𝐸 is 

strictly increasing in 𝐿𝐿 𝐹𝐹⁄  and takes any value in (0,𝓏𝓏), as 𝐿𝐿 𝐹𝐹⁄  varies from zero to infinity, and 

that the existence of the choke price, 𝓏𝓏 < ∞, implies lim
𝓏𝓏→𝓏𝓏

𝑓𝑓𝜃𝜃(𝓏𝓏) = ∞ and lim
𝓏𝓏→𝓏𝓏

 ℰ𝜃𝜃(𝓏𝓏) = ∞, and 

hence 𝑓𝑓𝜃𝜃′(𝓏𝓏) > 0 and ℰ𝜃𝜃′(𝓏𝓏) > 0 for 𝓏𝓏 sufficiently close to 𝓏𝓏, which means that entry is 

procompetitive and excessive for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

Theorem 3: Consider monopolistic competition under symmetric H.I.I.A. with gross substitutes. 

Assume I1 to ensure the symmetry of equilibrium and I2 to ensure the uniqueness of the 

symmetric equilibrium.  Then, the unique symmetric equilibrium is given by eq.(37) and eq.(38).  

At the unique symmetric equilibrium, entry is, 

• procompetitive and excessive for any 𝐿𝐿 𝐹𝐹⁄ > 0, if  𝑓𝑓𝜃𝜃′(𝓏𝓏) > 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (0,𝓏𝓏); 

• neutral and optimal for any 𝐿𝐿 𝐹𝐹⁄ > 0, 𝑚𝑚𝑓𝑓 𝑓𝑓𝜃𝜃′(𝓏𝓏) = 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (0,∞); that is, under CES; 

• anticompetitive and insufficient for any 𝐿𝐿 𝐹𝐹⁄ > 0, 𝑚𝑚𝑓𝑓 𝑓𝑓𝜃𝜃′(𝓏𝓏) < 0 𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (0,∞). 

Furthermore, in the presence of the choke price, 𝓏𝓏 < ∞, entry is procompetitive and excessive 

for a sufficiently large 𝐿𝐿 𝐹𝐹⁄ > 0. 

 

We now turn to some examples to illustrate Theorem 3. 
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Example 7: Perturbed CES, H.I.I.A. with global monotonicity.   Consider a family of H.I.I.A. 

technologies, given by  

𝑓𝑓𝜃𝜃(𝓏𝓏) ≡ −
𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) = 𝜎𝜎 + 𝛿𝛿(𝜎𝜎 − 1)𝑔𝑔(𝓏𝓏), 

where 𝜎𝜎 > 1 and 𝑔𝑔(𝓏𝓏) satisfies 𝑔𝑔′(𝓏𝓏) > 0  for all 𝓏𝓏 > 0 with 𝑔𝑔(0) = −1, 𝑔𝑔(∞) = 0 and 

sup{𝓏𝓏𝑔𝑔′(𝓏𝓏)|𝓏𝓏 > 0} ≡ 𝜈𝜈 < ∞.  For example,  

𝑔𝑔(𝓏𝓏) = −
𝜂𝜂

𝜂𝜂 + 𝓏𝓏
, 𝜂𝜂 > 0 ⟹ 𝜈𝜈 =

1
4

< ∞, 

𝑔𝑔(𝓏𝓏) = −𝑒𝑒−𝜇𝜇𝓏𝓏 ,𝜇𝜇 > 0 ⟹ 𝜈𝜈 = 𝑒𝑒−1 < ∞, 

 satisfy these conditions.  In addition, we impose the following restriction on 𝜎𝜎, 𝛿𝛿, and 𝜈𝜈: 

−
𝜎𝜎
𝜈𝜈

< 𝛿𝛿 < 1, 

so that 𝑓𝑓𝜃𝜃(𝓏𝓏) > 1, I1, and I2 hold.29  Then, Theorem 3 can be applied.  In this example, entry is 

procompetitive and excessive for all 𝐿𝐿 𝐹𝐹⁄ > 0, when 0 < 𝛿𝛿 < 1, while it is anticompetitive and 

insufficient for all 𝐿𝐿 𝐹𝐹⁄ > 0, when −𝜎𝜎
𝜈𝜈

< 𝛿𝛿 < 0.  

 

Example 8: H.I.I.A. with a choke price.   Consider an H.I.I.A. technology, given by 

𝜃𝜃(𝓏𝓏) = �
(ln(𝓏𝓏 𝓏𝓏⁄ ))1+𝛿𝛿

1 + 𝛿𝛿
, 0 < 𝓏𝓏 < 𝓏𝓏,

0,                                 𝓏𝓏 ≥ 𝓏𝓏,
 

with 0 < 𝓏𝓏 < ∞ and 𝛿𝛿 > 0.  For all 𝓏𝓏 such that 0 < 𝓏𝓏 < 𝓏𝓏, we have 

𝜃𝜃′(𝓏𝓏) = −
(ln(𝓏𝓏 𝓏𝓏⁄ ))𝛿𝛿

𝓏𝓏
< 0;    𝜃𝜃′′(𝓏𝓏) =

(ln(𝓏𝓏 𝓏𝓏⁄ ))𝛿𝛿

𝓏𝓏2
�1 +

𝛿𝛿
ln(𝓏𝓏 𝓏𝓏⁄ )� > 0; 

Hence, lim
𝓏𝓏→𝓏𝓏

𝜃𝜃(𝓏𝓏) = lim
𝓏𝓏→𝓏𝓏

𝜃𝜃′(𝓏𝓏) = 0. Also,  

 
29It is easy to verify 𝑓𝑓𝜃𝜃(𝓏𝓏) > 1 holds. For I1 and I2, if 𝛿𝛿 ≥ 0, 𝑓𝑓𝜃𝜃′(𝓏𝓏) ≥ 0, which implies both I1 and I2. If 𝛿𝛿 < 0, 
𝑓𝑓𝜃𝜃′(𝓏𝓏) < 0 for all 𝓏𝓏 > 0.  From Lemma 7, this implies ℰ𝜃𝜃′ (𝓏𝓏) < 0 for all 𝓏𝓏 > 0, which means that I2 implies I1.  To 
verify I2 for 𝛿𝛿 < 0, note that 𝑓𝑓𝜃𝜃′(𝓏𝓏) < 0 and ℰ𝜃𝜃′ (𝓏𝓏) < 0 for all 𝓏𝓏 > 0 implies 

𝑓𝑓𝜃𝜃(𝓏𝓏)ℰ𝜃𝜃(𝓏𝓏) > 𝑓𝑓𝜃𝜃(∞)ℰ𝜃𝜃(∞) = 𝜎𝜎(𝜎𝜎 − 1), 
while 𝛿𝛿 < 0 and the definition of 𝜈𝜈 imply 

𝓏𝓏𝑓𝑓𝜃𝜃′(𝓏𝓏) = 𝛿𝛿(𝜎𝜎 − 1)𝓏𝓏𝑔𝑔′(𝓏𝓏) > 𝜈𝜈𝛿𝛿(𝜎𝜎 − 1). 
Adding each side of these two inequalities yields  𝑓𝑓𝜃𝜃(𝓏𝓏)ℰ𝜃𝜃(𝓏𝓏) + 𝓏𝓏𝑓𝑓𝜃𝜃′(𝓏𝓏) > (𝜎𝜎 + 𝜈𝜈𝛿𝛿)(𝜎𝜎 − 1) > 0, which is 
equivalent to I2. 
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ℰ𝜃𝜃(𝓏𝓏) =
1 + 𝛿𝛿

ln(𝓏𝓏 𝓏𝓏⁄ ) > 0;   𝑓𝑓𝜃𝜃(𝓏𝓏) = 1 +
𝛿𝛿

ln(𝓏𝓏 𝓏𝓏⁄ ) > 1, 

which implies lim
𝓏𝓏↑𝓏𝓏

ℰ𝜃𝜃(𝓏𝓏) = ∞ = lim
𝓏𝓏↑𝓏𝓏

𝑓𝑓𝜃𝜃(𝓏𝓏). Furthermore, for all 𝓏𝓏 such that 0 < 𝓏𝓏 < 𝓏𝓏, we have: 

ℰ𝜃𝜃′ (𝓏𝓏) > 0, 𝑓𝑓𝜃𝜃′(𝓏𝓏) > 0, 

and hence entry is always procompetitive and excessive, not just for a sufficient large 𝐿𝐿/𝐹𝐹. 

 

The assumption of the global monotonicity of 𝑓𝑓𝜃𝜃(∙) in Theorem 3, which implies the 

global monotonicity of ℰ𝜃𝜃(∙) by Lemma 7, is important.  Otherwise, entry could be 

procompetitive and yet insufficient, or anticompetitive and yet excessive, as the next example 

illustrates. 

Example 9.  Perturbed CES, H.I.I.A. without global monotonicity.  Consider a family of 

H.I.I.A technologies with 

ℰ𝜃𝜃(𝓏𝓏) ≡ −
𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) = 𝜎𝜎 − 1 + 𝛿𝛿𝑔𝑔(𝓏𝓏),  

𝑓𝑓𝜃𝜃(𝓏𝓏) ≡ −
𝓏𝓏𝜃𝜃′′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) = 1 + ℰ𝜃𝜃(𝓏𝓏) −

𝓏𝓏ℰ𝜃𝜃′ (𝓏𝓏)
ℰ𝜃𝜃(𝓏𝓏) = 𝑓𝑓𝜃𝜃(𝓏𝓏) = 𝜎𝜎 + 𝛿𝛿𝑔𝑔(𝓏𝓏) −

𝛿𝛿𝓏𝓏𝑔𝑔′(𝓏𝓏)
𝜎𝜎 − 1 + 𝛿𝛿𝑔𝑔(𝓏𝓏)

, 

where 𝜎𝜎 > 1, 𝛿𝛿 can be either positive or negative (but sufficiently small in absolute value to ensure 

I1 and I2), while 𝑔𝑔(𝓏𝓏) is twice-continuously differentiable, single-peaked, and satisfies 𝑔𝑔(0) =

𝑔𝑔(∞) = 0, sup |𝑔𝑔′(𝓏𝓏)| < ∞. Let �̃�𝓏 > 0 be the maximizer of 𝑔𝑔(𝓏𝓏) Hence, 𝑔𝑔′(�̃�𝓏) = 0 > 𝑔𝑔′′(�̃�𝓏).  

For example, 

𝑔𝑔(𝓏𝓏) =
𝓏𝓏

𝜆𝜆 + 𝓏𝓏2
, 𝜆𝜆 > 0 ⟹ �̃�𝓏 = √𝜆𝜆; 

𝑔𝑔(𝓏𝓏) = 𝓏𝓏𝑒𝑒−𝜇𝜇𝓏𝓏 ,𝜇𝜇 > 0 ⟹ �̃�𝓏 = 1 𝜇𝜇⁄ . 

From Proposition 9, entry is excessive if and only if ℰ𝜃𝜃′ (𝓏𝓏𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝓏𝓏𝐸𝐸) > 0, while it is   

insufficient if and only if ℰ𝜃𝜃′ (𝓏𝓏𝐸𝐸) = 𝛿𝛿𝑔𝑔′(𝓏𝓏𝐸𝐸) < 0.  Evaluating 𝑓𝑓𝜃𝜃′(𝓏𝓏) at 𝓏𝓏 = �̃�𝓏 yields: 

𝑓𝑓𝜙𝜙′ (�̃�𝓏) = −
�̃�𝓏ℰ𝜃𝜃′′(�̃�𝓏)
ℰ𝜃𝜃(�̃�𝓏) = −𝛿𝛿𝑔𝑔′′(�̃�𝓏)

�̃�𝓏
ℰ𝜃𝜃(�̃�𝓏) ⋛ 0 ⟺ 𝛿𝛿 ⋛ 0. 

Thus, from Proposition 8, entry is procompetitive in the vicinity of �̃�𝓏, if 𝛿𝛿 > 0, while it is 

anticompetitive in the vicinity of �̃�𝓏, if 𝛿𝛿 < 0. 

Combining these two observations, we conclude that entry is procompetitive and yet 

insufficient for 𝛿𝛿 > 0 and 𝓏𝓏𝐸𝐸 slightly higher than �̃�𝓏, or equivalently, 𝐿𝐿 𝐹𝐹⁄  slightly higher than 
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𝑓𝑓𝜃𝜃(�̃�𝓏) 𝜃𝜃(�̃�𝓏)⁄ , while it is anticompetitive and yet excessive for 𝛿𝛿 < 0 and 𝓏𝓏𝐸𝐸 slightly lower than �̃�𝓏, 

or equivalently, 𝐿𝐿 𝐹𝐹⁄   slightly higher than 𝑓𝑓𝜃𝜃(�̃�𝓏) 𝜃𝜃(�̃�𝓏)⁄ . 

 

6.   Concluding Remarks 

In this paper, we extended the canonical model of monopolistic competition with 

symmetric homothetic CES demand system with gross substitutes by Dixit and Stiglitz (1977, 

Section I) to three classes of homothetic demand systems, H.S.A., H.D.I.A., and H.I.I.A, which 

are mutually exclusive except that each class contains CES as a knife-edge case. These three 

classes are flexible and yet tractable enough to allow us to identify not only the conditions for the 

existence of the unique symmetric free entry equilibrium and for the non-existence for an 

asymmetric free-entry equilibrium, but also the conditions for procompetitive vs. anticompetitive 

entry and for excessive vs. insufficient entry. Among the main findings are that entry is 

excessive (insufficient) if it is globally procompetitive (anticompetitive)30 and that, in the 

presence of the choke price, entry is procompetitive and excessive at least for a sufficiently large 

market size. One implication is that, for those who believe that procompetitive entry is the 

empirically relevant case, entry is excessive and hence (small) regulation of entry is welfare-

improving, at least in the absence of other forms of distortion.31 

These classes of homothetic demand systems, which offer three alternative ways of 

departing from CES, are flexible and tractable. Their main advantage, when applied to 

monopolistic competition, is that entry and behavior of competing firms affect the demand curve 

for each firm only through either one aggregator (under H.S.A.) or two aggregators (under 

H.D.I.A., and H.I.I.A.), and the price elasticity of demand for each firm only through a single 

aggregator under all three classes. Furthermore, homotheticity makes it easier to use them as 

building blocks in dynamic and/or multi-sector general equilibrium settings. For these reasons, 

 
30As already pointed out in the introduction, the qualification “globally” is important. If the equilibrium markup rate 
responds nonmonotonically to entry, procompetitive entry can be insufficient, while anticompetitive entry can be 
excessive in some range of parameter values, even under the three classes we considered, as demonstrated by 
Examples 3, 6, and 9. 
31An open question is whether it is possible to find the requirement analogous to the global monotonicity, which 
ensures these results to be extended beyond the three classes. (The difficulty is not only to find the condition that 
plays the same role of the global monotonicity of the markup rate response, but also to find the conditions that 
ensure gross substitutability, as well as the existence and uniqueness of symmetric free-entry equilibrium.)  For this 
reason, we indicate the possibility of procompetitive and yet insufficient entry and anticompetitive and yet excessive 
entry by small but gray zones in Figure 2. 
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these three classes have the potential for unlocking many new lines of inquiry, which would not 

be possible under CES.  To give an example, consider monopolistic competition with 

heterogenous firms. It is well-known that heterogeneity of firms/products in quality, market size, 

and productivity are all isomorphic to each other under CES, so that one could assume without 

loss of generality that firms differ only in productivity, as Melitz (2003) has done. This is no 

longer the case under non-CES. The problem, however, is that monopolistic competition models 

with many dimensions of heterogeneity across firms would lack any predictive content under 

general homothetic demand systems. Partly motivated by this, Matsuyama and Ushchev (2020b) 

propose parametric families within each of these three classes, which capture many dimensions 

of heterogeneity in a meaningful and yet tractable way. In addition to those imposed by the three 

classes, the key restriction that buys a lot of tractability is that the pass-through rate is constant 

and common across firms/products. Otherwise, firms/products can be heterogeneous in market 

size, in quality, in substitutability, and in productivity. 

Among the three classes, H.S.A. is particularly tractable due to its single aggregator 

property, because the equilibrium value of the single aggregator can be uniquely pinned down by 

the free-entry condition. 32  In Matsuyama and Ushchev (2020a), we take advantage of this 

feature of H.S.A. in a dynamic monopolistic competition model and investigate how market size 

affects the dynamics of innovation through the procompetitive effect. Despite the model features 

technology diffusion, which causes the co-existence of monopolistically and competitively 

priced varieties, the case of H.S.A. remains as tractable as the CES case, with much richer 

implications. 

 
 

  

 
32In addition to its single aggregator property, there is another advantage of H.S.A. demand systems, as pointed out 
by Kasahara and Sugita (2020).  That is, the market share functions are the primitive of H.S.A., so that it can be 
readily identified with typical firm-level data, which contain revenue, not output quantity.  
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Appendix A: Proof of Lemma 5 

We first prove the two preliminary lemmas, Lemma A1 and Lemma A2. 

Lemma A1. For any 𝜙𝜙(⋅) which is strictly increasing, strictly concave, and satisfies 𝜙𝜙(0) = 0, 

ℰ𝜙𝜙(0) = 1 − 𝑓𝑓𝜙𝜙(0). 

Proof. From 𝜙𝜙(0) = 0 and 0 < 𝓎𝓎𝜙𝜙′(𝓎𝓎) < 𝜙𝜙(𝓎𝓎) for all 𝓎𝓎 > 0, lim
𝓎𝓎→0

𝓎𝓎𝜙𝜙′(𝓎𝓎) = 0. It is thus 

legitimate to use the l’Hospital’s rule in computing the following limit: 

ℰ𝜙𝜙(0) ≡ lim
𝓎𝓎↓0

ℰ𝜙𝜙(𝓎𝓎) = lim
𝓎𝓎↓0

𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) = lim

𝓎𝓎↓0

𝜙𝜙′(𝓎𝓎) + 𝓎𝓎𝜙𝜙′′(𝓎𝓎)
𝜙𝜙′(𝓎𝓎) = 1 − 𝑓𝑓𝜙𝜙(0). 

This completes the proof. ∎ 

Lemma A2. Assume that 𝑓𝑓𝜙𝜙′ (⋅) does not change sign over (0,𝓎𝓎0), where 0 < 𝓎𝓎0 ≤ ∞. Then, for 

all 𝓎𝓎 ∈ (0,𝓎𝓎0), 

ℰ𝜙𝜙(𝓎𝓎) ⋚ ℰ𝜙𝜙(0) ⟺ 𝑓𝑓𝜙𝜙′ (𝓎𝓎) ⋛ 0. 

Proof. Two cases may arise. 

Case 1: 𝑓𝑓𝜙𝜙(0) < 1. First, define: 

 ∆𝑓𝑓𝜙𝜙(𝓎𝓎) ≡ 𝑓𝑓𝜙𝜙(𝓎𝓎) − 𝑓𝑓𝜙𝜙(0)  

to obtain the identity, 

𝑑𝑑 ln𝜙𝜙′(𝓎𝓎)
𝑑𝑑 ln𝓎𝓎

≡ −𝑓𝑓𝜙𝜙(𝓎𝓎) = −𝑓𝑓𝜙𝜙(0) − ∆𝑓𝑓𝜙𝜙(𝓎𝓎), 

integrating which yields 

𝜙𝜙′(𝓎𝓎) = 𝑓𝑓(𝓎𝓎)𝓎𝓎−𝑟𝑟𝜙𝜙(0), 𝑓𝑓(𝓎𝓎) ≡ exp �−�
∆𝑓𝑓𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝓎𝓎

𝓎𝓎0
� > 0; 

𝜙𝜙(𝓎𝓎) = � 𝜙𝜙′(𝜉𝜉)𝑑𝑑𝜉𝜉
𝓎𝓎

0
= � 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜙𝜙(0)𝑑𝑑𝜉𝜉

𝓎𝓎

0
. 

Hence, 

 
ℰ𝜙𝜙(𝓎𝓎) ≡

𝓎𝓎𝜙𝜙′(𝓎𝓎)
𝜙𝜙(𝓎𝓎) =

𝑓𝑓(𝓎𝓎)𝓎𝓎1−𝑟𝑟𝜙𝜙(0)

∫ 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜙𝜙(0)𝑑𝑑𝜉𝜉𝓎𝓎
0

. 
 

By the mean value theorem, there exists 𝛼𝛼(𝓎𝓎) ∈ (0,𝓎𝓎), such that 

� 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜙𝜙(0)𝑑𝑑𝜉𝜉
𝓎𝓎

0
= 𝑓𝑓(𝛼𝛼(𝓎𝓎))� 𝜉𝜉−𝑟𝑟𝜙𝜙(0)𝑑𝑑𝜉𝜉

𝓎𝓎

0
=

1
1 − 𝑓𝑓𝜙𝜙(0)𝑓𝑓

(𝛼𝛼(𝓎𝓎))𝓎𝓎1−𝑟𝑟𝜙𝜙(0). 

Hence, using the definition of 𝑓𝑓(𝓎𝓎) and Lemma A1, 
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ℰ𝜙𝜙(𝓎𝓎) = �1 − 𝑓𝑓𝜙𝜙(0)�

𝑓𝑓(𝓎𝓎)
𝑓𝑓(𝛼𝛼(𝓎𝓎)) = ℰ𝜙𝜙(0) exp �−�

∆𝑓𝑓𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝓎𝓎

𝛼𝛼(𝓎𝓎)
�. 

 

Then, for all 𝓎𝓎 ∈ (0,𝓎𝓎0), 0 < 𝛼𝛼(𝓎𝓎) < 𝓎𝓎 < 𝓎𝓎0 implies 

ℰ𝜙𝜙(𝓎𝓎) ⋚ ℰ𝜙𝜙(0) ⟺�
∆𝑓𝑓𝜙𝜙(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝓎𝓎

𝛼𝛼𝓎𝓎
⋛ 0 ⟺ 𝑓𝑓𝜙𝜙′ (𝓎𝓎) ⋛ 0. 

Case 2: 𝑓𝑓𝜙𝜙(0) = 1. This happens only when 𝑓𝑓𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 ∈ (0,𝓎𝓎0), because 𝑓𝑓𝜙𝜙(𝓎𝓎) <

1 = 𝑓𝑓𝜙𝜙(0) for all 𝓎𝓎 ∈ (0,𝓎𝓎0). And from Lemma A1, ℰ𝜙𝜙(𝓎𝓎) > 0 = ℰ𝜙𝜙(0) for all 𝓎𝓎 ∈ (0,𝓎𝓎0). 

This completes the proof. ∎ 

We are now ready to prove Lemma 5. 

Lemma 5. Assume that 𝑓𝑓𝜙𝜙′ (⋅) does not change sign over (0,𝓎𝓎0), where 0 < 𝓎𝓎0 ≤ ∞. Then, for 

all 𝓎𝓎 ∈ (0,𝓎𝓎0) 

𝑓𝑓𝜙𝜙′ (⋅) ⋛ 0 ⟹  ℰ𝜙𝜙′ (⋅) ⋚ 0. 

Proof. Three cases may arise. 

Case 1: 𝑓𝑓𝜙𝜙′ (𝓎𝓎) > 0 for all 𝓎𝓎 ∈ (0,𝓎𝓎0). To prove by contradiction, suppose to the contrary that 

that there is 𝓎𝓎1 ∈ (0,𝓎𝓎0), such that ℰ𝜙𝜙′ (𝓎𝓎1) ≥ 0. Two sub-cases may arise. 

Case 1-1: ℰ𝜙𝜙′ (𝓎𝓎1) > 0. Because Lemma A2 implies ℰ𝜙𝜙(𝓎𝓎1) < ℰ𝜙𝜙(0), ℰ𝜙𝜙(𝓎𝓎) must have an 

interior local minimizer 𝓎𝓎2 ∈ (0,𝓎𝓎1), which satisfies 

ℰ𝜙𝜙′ (𝓎𝓎2) = 0, ℰ𝜙𝜙′′(𝓎𝓎2) ≥ 0. 

Differentiating the identity 

ℰ𝜙𝜙′ (𝓎𝓎) =
ℰ𝜙𝜙(𝓎𝓎)
𝓎𝓎

�1 − ℰ𝜙𝜙(𝓎𝓎) − 𝑓𝑓𝜙𝜙(𝓎𝓎)�, 

at 𝓎𝓎 = 𝓎𝓎2 and using ℰ𝜙𝜙′ (𝓎𝓎2) = 0, we obtain: 

ℰ𝜙𝜙′′(𝓎𝓎2) = −
ℰ𝜙𝜙(𝓎𝓎2)
𝓎𝓎2

𝑓𝑓𝜙𝜙′ (𝓎𝓎2) < 0, 

which clearly contradicts ℰ𝜙𝜙′′(𝓎𝓎2) ≥ 0. 

Case 1-2: ℰ𝜙𝜙′ (𝓎𝓎1) = 0. In this case, differentiating the identity 

ℰ𝜙𝜙′ (𝓎𝓎) =
ℰ𝜙𝜙(𝓎𝓎)
𝓎𝓎

�1 − ℰ𝜙𝜙(𝓎𝓎) − 𝑓𝑓𝜙𝜙(𝓎𝓎)�, 

at 𝓎𝓎 = 𝓎𝓎1 yields 
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ℰ𝜙𝜙′′(𝓎𝓎1) = −
ℰ𝜙𝜙(𝓎𝓎1)
𝓎𝓎1

𝑓𝑓𝜙𝜙′ (𝓎𝓎1) < 0. 

Therefore, for a small ℎ > 0 we have: ℰ𝜙𝜙′ (𝓎𝓎1 − ℎ) > ℰ𝜙𝜙′ (𝓎𝓎1) = 0. By replacing 𝓎𝓎1 with 𝓎𝓎1 −

ℎ, we use the same argument as in case 1-1. 

Thus, we have: 

𝑓𝑓𝜙𝜙′ (𝓎𝓎) > 0  𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,𝓎𝓎0) ⟹  ℰ𝜙𝜙′ (𝓎𝓎) < 0  𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓎𝓎 ∈ (0,𝓎𝓎0).  

Case 2: 𝑓𝑓𝜙𝜙′ (𝓎𝓎) = 0 for all 𝓎𝓎 ∈ (0,𝓎𝓎0) This is the CES case, which is straightforward. 

Case 3: 𝑓𝑓𝜙𝜙′ (𝓎𝓎) < 0 for all 𝓎𝓎 ∈ (0,𝓎𝓎0) . One can handle this case along the same lines as case 1. 

This completes the proof. ∎ 

 

Appendix B: Proof of Lemma 7 

We first prove the three preliminary lemmas, Lemma B1, Lemma B2, and Lemma B3. 

Lemma B1.   𝓏𝓏𝜃𝜃′(𝓏𝓏) = 0. 

Proof. For 𝓏𝓏 < ∞, this follows from 𝜃𝜃′(𝓏𝓏) = 0. For 𝓏𝓏 = ∞, 

𝜃𝜃(𝓏𝓏) = −� 𝜃𝜃′(𝜉𝜉)𝑑𝑑𝜉𝜉
∞

𝓏𝓏
= −�

𝜉𝜉𝜃𝜃′(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
∞

𝓏𝓏
= − lim

𝑥𝑥→∞
�

𝜉𝜉𝜃𝜃′(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝑥𝑥

𝓏𝓏
 

Suppose that there is 𝓏𝓏0 > 0 such that, for all 𝓏𝓏 > 𝓏𝓏0,  −𝓏𝓏𝜃𝜃′(𝓏𝓏) > 𝑐𝑐 > 0.  Then, 

𝜃𝜃(𝓏𝓏0) = − lim
𝑥𝑥→∞

�
𝜉𝜉𝜃𝜃′(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝑥𝑥

𝓏𝓏0
> lim

𝑥𝑥→∞
�

𝑐𝑐
𝜉𝜉
𝑑𝑑𝜉𝜉

𝑥𝑥

𝓏𝓏0
= ∞, 

a contradiction.  Hence,  𝓏𝓏𝜃𝜃′(𝓏𝓏) = lim
𝓏𝓏→∞

𝓏𝓏𝜃𝜃′(𝓏𝓏) = 0.  This completes the proof. ∎ 

Lemma B2. For any 𝜃𝜃(⋅) which defines an H.I.I.A. technology, we have: 

ℰ𝜃𝜃(𝓏𝓏) = 𝑓𝑓𝜃𝜃(𝓏𝓏)− 1, 

where 0 < 𝓏𝓏 ≡ inf{𝓏𝓏 > 0 | 𝜃𝜃(𝓏𝓏) = 0} ≤ ∞. 

Proof. Since 𝜃𝜃(𝓏𝓏) = 0 = 𝓏𝓏𝜃𝜃′(𝓏𝓏) by Lemma B1, it is legitimate to use the l’Hospital’s rule in 

computing the following limit: 

ℰ𝜃𝜃(𝓏𝓏) ≡ lim
𝓏𝓏↑𝓏𝓏

ℰ𝜃𝜃(𝓏𝓏) = lim
𝓏𝓏↑𝓏𝓏

−𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) = lim

𝓏𝓏↑𝓏𝓏

−𝓏𝓏𝜃𝜃′′(𝓏𝓏) − 𝜃𝜃′(𝓏𝓏)
𝜃𝜃′(𝓏𝓏) = 𝑓𝑓𝜃𝜃(𝓏𝓏) − 1. 

This completes the proof. ∎ 

Lemma B3. Assume that 𝑓𝑓𝜃𝜃′(⋅) does not change sign over  (𝓏𝓏0,𝓏𝓏), where 0 < 𝓏𝓏0 <  𝓏𝓏. Then, for 

all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏), 

ℰ𝜃𝜃(𝓏𝓏) ⋚ ℰ𝜃𝜃(𝓏𝓏) ⟺ 𝑓𝑓𝜃𝜃′(𝓏𝓏) ⋛ 0. 



 
 

Page 51 of 53 
 

Proof. If 𝑓𝑓𝜃𝜃(𝓏𝓏) = ∞, then the only possibility is that 𝑓𝑓𝜃𝜃′(⋅) > 0. In this case, by Lemma B2, we 

have: ℰ𝜃𝜃(𝓏𝓏) = ∞ > ℰ𝜃𝜃(𝓏𝓏) for all 𝓏𝓏 ∈ (0,𝓏𝓏).  Consider now the case when 1 < 𝑓𝑓𝜃𝜃(𝓏𝓏) < ∞, 

hence 𝓏𝓏 = ∞. Two cases may arise. 

Case 1: 𝑓𝑓𝜃𝜃(∞) > 1. First, define: 

 ∆𝑓𝑓𝜃𝜃(𝓏𝓏) ≡ 𝑓𝑓𝜃𝜃(∞) − 𝑓𝑓𝜃𝜃(𝓏𝓏),  

to obtain the identity,  

𝑑𝑑 ln[−𝜃𝜃′(𝓏𝓏)]
𝑑𝑑 ln 𝓏𝓏

= ∆𝑓𝑓𝜃𝜃(𝓏𝓏) − 𝑓𝑓𝜃𝜃(∞), 

integrating which yields 

−𝜃𝜃′(𝓏𝓏) = 𝑓𝑓(𝓏𝓏)𝓏𝓏−𝑟𝑟𝜃𝜃(∞), 𝑓𝑓(𝓏𝓏) ≡ exp ��
∆𝑓𝑓𝜃𝜃(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝓏𝓏

𝓏𝓏0
� > 0; 

𝜃𝜃(𝓏𝓏) = −� 𝜃𝜃′(𝜉𝜉)𝑑𝑑𝜉𝜉
∞

𝓏𝓏
= � 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜃𝜃(∞)𝑑𝑑𝜉𝜉

∞

𝓏𝓏
. 

Hence, 

 
ℰ𝜃𝜃(𝓏𝓏) ≡ −

𝓏𝓏𝜃𝜃′(𝓏𝓏)
𝜃𝜃(𝓏𝓏) =

𝑓𝑓(𝓏𝓏)𝓏𝓏1−𝑟𝑟𝜃𝜃(∞)

∫ 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜃𝜃(∞)𝑑𝑑𝜉𝜉∞
𝓏𝓏

. 
 

By the mean value theorem, there exists 𝛽𝛽(𝓏𝓏) > 𝓏𝓏, such that 

� 𝑓𝑓(𝜉𝜉)𝜉𝜉−𝑟𝑟𝜃𝜃(∞)𝑑𝑑𝜉𝜉
∞

𝓏𝓏
= 𝑓𝑓(𝛽𝛽(𝓏𝓏))� 𝜉𝜉−𝑟𝑟𝜃𝜃(∞)𝑑𝑑𝜉𝜉

∞

𝓏𝓏
=

1
𝑓𝑓𝜃𝜃(∞) − 1

𝑓𝑓(𝛽𝛽(𝓏𝓏))𝓏𝓏1−𝑟𝑟𝜃𝜃(∞). 

Hence, using the definition of 𝑓𝑓(𝓏𝓏) and Lemma B2 for 𝓏𝓏 = ∞, 

 
ℰ𝜃𝜃(𝓏𝓏) = (𝑓𝑓𝜃𝜃(∞) − 1)

𝑓𝑓(𝓏𝓏)
𝑓𝑓(𝛽𝛽(𝓏𝓏)) = ℰ𝜃𝜃(∞) exp �−�

∆𝑓𝑓𝜃𝜃(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝛽𝛽(𝓏𝓏)

𝓏𝓏
�. 

 

Then, for all 𝓏𝓏 > 𝓏𝓏0, 𝛽𝛽(𝓏𝓏) > 𝓏𝓏 >  𝓏𝓏0 implies 

ℰ𝜃𝜃(𝓏𝓏) ⋚ ℰ𝜃𝜃(∞) ⟺�
∆𝑓𝑓𝜃𝜃(𝜉𝜉)
𝜉𝜉

𝑑𝑑𝜉𝜉
𝛽𝛽(𝓏𝓏)

𝓏𝓏
⋛ 0 ⟺ 𝑓𝑓𝜃𝜃′(⋅) ⋛ 0. 

Case 2: 𝑓𝑓𝜃𝜃(∞) = 1. This happens only when 𝑓𝑓𝜃𝜃′(𝓏𝓏) < 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,∞), because 𝑓𝑓𝜃𝜃(𝓏𝓏) > 1 

for all 𝓏𝓏 ∈ (𝓏𝓏0,∞). From Lemma B2, ℰ𝜃𝜃(𝓏𝓏) > 0 = ℰ𝜃𝜃(∞) for all 𝓏𝓏 ∈ (𝓏𝓏0,∞). 

This completes the proof. ∎ 

 We are now ready to prove Lemma 7. 

Lemma 7. Assume that 𝑓𝑓𝜃𝜃′(⋅) does not change sign over (𝓏𝓏0,𝓏𝓏), where 0 < 𝓏𝓏0 <  𝓏𝓏. Then, for all 

𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏), 
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𝑓𝑓𝜃𝜃′(⋅) ⋛ 0 ⟹  ℰ𝜙𝜙′ (⋅) ⋛ 0. 

Proof. Three cases may arise. 

Case 1: 𝑓𝑓𝜃𝜃′(𝓏𝓏) > 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). To prove by contradiction, suppose to the contrary that 

there is 𝓏𝓏1 ∈ (𝓏𝓏0,𝓏𝓏), such that ℰ𝜃𝜃′ (𝓏𝓏1) ≤ 0. Two sub-cases may arise. 

Case 1-1: ℰ𝜃𝜃′ (𝓏𝓏1) < 0. Because Lemma B3 implies ℰ𝜃𝜃(𝓏𝓏1) < ℰ𝜃𝜃(𝓏𝓏), ℰ𝜃𝜃(⋅) must have an 

interior local minimizer 𝓏𝓏2 ∈ (𝓏𝓏1,𝓏𝓏), which satisfies 

ℰ𝜃𝜃′ (𝓏𝓏2) = 0, ℰ𝜃𝜃′′(𝓏𝓏2) ≥ 0. 

Differentiating the identity 

ℰ𝜃𝜃′ (𝓏𝓏) =
ℰ𝜃𝜃(𝓏𝓏)
𝓏𝓏

�1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑓𝑓𝜃𝜃(𝓏𝓏)�, 

at 𝓏𝓏 = 𝓏𝓏2 and using ℰ𝜃𝜃′ (𝓏𝓏2) = 0, we obtain: 

ℰ𝜃𝜃′′(𝓏𝓏2) = −
ℰ𝜃𝜃(𝓏𝓏2)
𝓏𝓏2

𝑓𝑓𝜃𝜃′(𝓏𝓏2) < 0, 

which clearly contradicts ℰ𝜃𝜃′′(𝓏𝓏2) ≥ 0. 

Case 1-2: ℰ𝜃𝜃′ (𝓏𝓏1) = 0. In this case, differentiating the identity 

ℰ𝜃𝜃′ (𝓏𝓏) =
ℰ𝜃𝜃(𝓏𝓏)
𝓏𝓏

�1 + ℰ𝜃𝜃(𝓏𝓏) − 𝑓𝑓𝜃𝜃(𝓏𝓏)�, 

at 𝓏𝓏 = 𝓏𝓏1 yields 

ℰ𝜃𝜃′′(𝓏𝓏1) = −
ℰ𝜃𝜃(𝓏𝓏1)
𝓏𝓏1

𝑓𝑓𝜃𝜃′(𝓏𝓏1) < 0. 

Therefore, for a small ℎ > 0 we have: ℰ𝜃𝜃′ (𝓏𝓏1 + ℎ) < ℰ𝜙𝜙′ (𝓏𝓏1) = 0. By replacing 𝓏𝓏1 with 𝓏𝓏1 + ℎ, 

we use the same argument as in case 1-1. 

Thus, we have: 

𝑓𝑓𝜃𝜃′(𝓏𝓏) > 0  𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏) ⟹  ℰ𝜃𝜃′ (𝓏𝓏) > 0  𝑓𝑓𝑐𝑐𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏).  

Case 2: 𝑓𝑓𝜃𝜃′(𝓏𝓏) = 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). This is the CES case, which is straightforward. 

Case 3: 𝑓𝑓𝜃𝜃′(𝓏𝓏) < 0 for all 𝓏𝓏 ∈ (𝓏𝓏0,𝓏𝓏). One can handle this case along the same lines as case 1. 

This completes the proof. ∎ 
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Figure 1:   
 
Three Classes 
 

 

Figure 2:   
 
Entry is excessive if it is 
globally procompetitive 
and insufficient if it is 
globally anticompetitive 
under the three classes. 
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